Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 18(5): 565-574, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35165443

RESUMO

Inflammasomes are multiprotein complexes that sense intracellular danger signals and induce pyroptosis. CARD8 and NLRP1 are related inflammasomes that are repressed by the enzymatic activities and protein structures of the dipeptidyl peptidases 8 and 9 (DPP8/9). Potent DPP8/9 inhibitors such as Val-boroPro (VbP) activate both NLRP1 and CARD8, but chemical probes that selectively activate only one have not been identified. Here we report a small molecule called CQ31 that selectively activates CARD8. CQ31 inhibits the M24B aminopeptidases prolidase (PEPD) and Xaa-Pro aminopeptidase 1 (XPNPEP1), leading to the accumulation of proline-containing peptides that inhibit DPP8/9 and thereby activate CARD8. NLRP1 is distinct from CARD8 in that it directly contacts DPP8/9's active site; these proline-containing peptides, unlike VbP, do not disrupt this repressive interaction and thus do not activate NLRP1. We expect that CQ31 will now become a valuable tool to study CARD8 biology.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Inflamassomos , Aminopeptidases/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Neoplasias , Prolina
2.
Phys Rev Lett ; 130(16): 163603, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154637

RESUMO

We demonstrate the formation of a condensate in a dark state of momentum states, in a pumped and shaken cavity-BEC system. The system consists of an ultracold quantum gas in a high-finesse cavity, which is pumped transversely by a phase-modulated laser. This phase-modulated pumping couples the atomic ground state to a superposition of excited momentum states, which decouples from the cavity field. We demonstrate how to achieve condensation in this state, supported by time-of-flight and photon emission measurements. With this, we show that the dark state concept provides a general approach to efficiently prepare complex many-body states in an open quantum system.

3.
Arch Dis Child Educ Pract Ed ; 108(1): 17-21, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34799417

RESUMO

Torticollis refers to a state in which the neck is twisted due to excessive contraction or shortening of the muscles on one side. Congenital muscular torticollis, which is more common than acquired torticollis, has an incidence of 0.3%-1.9% among all live births. The clinical approach to torticollis depends on the age at presentation, duration of torticollis and presenting symptoms. The underlying aetiology for torticollis varies with the age of the child. Torticollis can be a presenting feature for life-threatening conditions and thus requires careful evaluation.


Assuntos
Torcicolo , Criança , Humanos , Encaminhamento e Consulta , Torcicolo/diagnóstico
4.
Arch Dis Child Educ Pract Ed ; 108(3): 181-183, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34880073

RESUMO

Paracetamol is one of the most frequent reasons for poisonings across the UK with an estimated 90,000 patients and 150 deaths annually. International normalised ratio (INR) may be elevated due to hepatocellular damage and is frequently used to monitor progress on N-acetyl cysteine. N-acetyl cysteine is associated with reduced activity of vitamin K dependent clotting factors leading to a benign elevation of INR. In asymptomatic children with normal aspartate transaminase/alanine transaminase, isolated borderline elevation of INR following paracetamol overdose should be reviewed for possible N-acetyl cysteine induced elevation of INR. Due to these factors, in those with borderline persistent elevation of INR, N-acetyl cysteine can be safety stopped if INR is falling on two or more consecutive tests and is <3.0.


Assuntos
Acetaminofen , Hepatopatias , Humanos , Criança , Coeficiente Internacional Normatizado , Acetilcisteína/uso terapêutico , Vitamina K/uso terapêutico
6.
Neurobiol Dis ; 65: 82-92, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24412310

RESUMO

The spreading of pathology through neuronal pathways is likely to be the cause of the progressive cognitive loss observed in Alzheimer's disease (AD) and other neurodegenerative diseases. We have recently shown the propagation of AD pathology via cell-to-cell transfer of oligomeric amyloid beta (Aß) residues 1-42 (oAß1-42) using our donor-acceptor 3-D co-culture model. We now show that different Aß-isoforms (fluorescently labeled 1-42, 3(pE)-40, 1-40 and 11-42 oligomers) can transfer from one cell to another. Thus, transfer is not restricted to a specific Aß-isoform. Although different Aß isoforms can transfer, differences in the capacity to clear and/or degrade these aggregated isoforms result in vast differences in the net amounts ending up in the receiving cells and the net remaining Aß can cause seeding and pathology in the receiving cells. This insufficient clearance and/or degradation by cells creates sizable intracellular accumulations of the aggregation-prone Aß1-42 isoform, which further promotes cell-to-cell transfer; thus, oAß1-42 is a potentially toxic isoform. Furthermore, cell-to-cell transfer is shown to be an early event that is seemingly independent of later appearances of cellular toxicity. This phenomenon could explain how seeds for the AD pathology could pass on to new brain areas and gradually induce AD pathology, even before the first cell starts to deteriorate, and how cell-to-cell transfer can act together with the factors that influence cellular clearance and/or degradation in the development of AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Comunicação Celular/fisiologia , Neuritos/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Técnicas de Cocultura , Matriz Extracelular/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Neuregulina-1/farmacologia , Neuritos/ultraestrutura , Neuroblastoma/patologia , Fragmentos de Peptídeos/ultraestrutura , Isoformas de Proteínas , Fatores de Tempo , Tretinoína/farmacologia
8.
J Cell Mol Med ; 17(1): 12-29, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23301705

RESUMO

The rapid accumulation of knowledge on apoptosis regulation in the 1990s was followed by the development of several experimental anticancer- and anti-ischaemia (stroke or myocardial infarction) drugs. Activation of apoptotic pathways or the removal of cellular apoptotic inhibitors has been suggested to aid cancer therapy and the inhibition of apoptosis was thought to limit ischaemia-induced damage. However, initial clinical studies on apoptosis-modulating drugs led to unexpected results in different clinical conditions and this may have been due to co-effects on non-apoptotic interconnected cell death mechanisms and the 'yin-yang' role of autophagy in survival versus cell death. In this review, we extend the analysis of cell death beyond apoptosis. Upon introduction of molecular pathways governing autophagy and necrosis (also called necroptosis or programmed necrosis), we focus on the interconnected character of cell death signals and on the shared cell death processes involving mitochondria (e.g. mitophagy and mitoptosis) and molecular signals playing prominent roles in multiple pathways (e.g. Bcl2-family members and p53). We also briefly highlight stress-induced cell senescence that plays a role not only in organismal ageing but also offers the development of novel anticancer strategies. Finally, we briefly illustrate the interconnected character of cell death forms in clinical settings while discussing irradiation-induced mitotic catastrophe. The signalling pathways are discussed in their relation to cancer biology and treatment approaches.


Assuntos
Apoptose/genética , Autofagia/genética , Necrose/genética , Neoplasias/patologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Caspases/genética , Caspases/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Necrose/tratamento farmacológico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Morte Celular/genética , Receptores de Morte Celular/metabolismo , Transdução de Sinais , Estresse Fisiológico
9.
Anticancer Agents Med Chem ; 23(4): 368-382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36056850

RESUMO

Glioblastoma is an aggressive and recurrent tumour that affects our brain and spinal cord with an extensively poor prognosis and death of the patient within 14-15 months of diagnosis. The tumour originates from astrocytes and therefore comes under the glioma known as astrocytoma. These tumours exhibit miscellaneous properties and contain cancer stem cells (CSCs). The stem cells exhibit diverse mechanisms through which these cells indulge in the proliferation and renewal of their systems. CSCs pose a significant obstacle as far as a cancer therapy is concerned, which incorporates blocking important signalling pathways involved in CSCs' self-renewal and survival which may also include inhibition of the ATP-binding cassette transporters. Nanomedicine, biomarkers and drug delivery technologybased approaches using nanoparticles have tremendous ability to tackle the restrictions impending clinical applications, such as diagnosis and targeting of CSC-specific agents. Nanocarrier-based therapeutic agents have shown the potential of penetrating CSCs and increasing drug accumulation in CSCs. Nanomedicine can overcome ATP-driven pumpmediated multidrug resistance while also reducing the harmful effects on non-cancerous cells. The objective of this review is to examine the advantages of nanomedicine and the innovative approaches that have been explored to address the challenges presented by CSCs in order to control the progression of glioblastomas by developing novel nanotherapeutic interventions which target CSCs.


Assuntos
Antineoplásicos , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Recidiva Local de Neoplasia , Glioma/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Células-Tronco Neoplásicas , Antineoplásicos/uso terapêutico
10.
Neurol Clin Pract ; 13(6): 1-6, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37795502

RESUMO

Background and Objectives: Psychogenic nonepileptic seizures (PNES) are paroxysmal events that resemble epileptic seizures but have psychological underpinnings. Patients with PNES have high health care utilization. We hypothesize that appropriate care would lead to decreases in utilization. The aim of this study was to measure the impact of a multidisciplinary PNES clinic in reducing health care utilization (HCU) in youth with PNES referred to the clinic. Methods: We reviewed the frequency of visits to the emergency department (ED), urgent care (UC), planned and unplanned hospitalizations, neurodiagnostic studies, and total charges associated with these encounters 12 months before and 12 months after initial referral to the clinic. Manual chart review of all patients referred from November 2017 to March 2020 was performed. Results: Two hundred and twelve unique patients were included in this retrospective study. Patient sex was identified as 71% female, 28% male, and 1% other, with an average age of 14 years at diagnosis. These patients visited the ED a total of 410 times before being seen in the PNES clinic, which decreased to 187 visits after (75% reduction). All measures of HCU decreased in the 12 months after the visit, and statistically significant differences were observed in all measures of HCU except for head MRIs, leading to an estimated potential cost savings of $7,978,447. Discussion: Patients with PNES were found to have decreased health care utilization in the 12 months after referral to the Nationwide Children's Hospital multidisciplinary clinic, including significant decreases in emergency services and unnecessary diagnostic testing, in the 12 months after the referral.

11.
J Med Chem ; 66(4): 2589-2607, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36724486

RESUMO

Inflammasomes are innate immune signaling platforms that trigger pyroptotic cell death. NLRP1 and CARD8 are related human inflammasomes that detect similar danger signals, but NLRP1 has a higher activation threshold and triggers a more inflammatory form of pyroptosis. Both sense the accumulation of intracellular peptides with Xaa-Pro N-termini, but Xaa-Pro peptides on their own without a second danger signal only activate the CARD8 inflammasome. We recently reported that a dual inhibitor of the Xaa-Pro-cleaving M24B aminopeptidases PEPD and XPNPEP1 called CQ31 selectively activates the CARD8 inflammasome by inducing the build-up of Xaa-Pro peptides. Here, we performed structure-activity relationship studies on CQ31 to develop the optimized dual PEPD/XPNPEP1 inhibitor CQ80 that more effectively induces CARD8 inflammasome activation. We anticipate that CQ80 will become a valuable tool to study the basic biology and therapeutic potential of selective CARD8 inflammasome activation.


Assuntos
Aminopeptidases , Inflamassomos , Humanos , Inflamassomos/metabolismo , Aminopeptidases/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Transdução de Sinais , Piroptose , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo
12.
Cell Rep ; 42(1): 111965, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36649711

RESUMO

NLRP1 and CARD8 are related pattern-recognition receptors (PRRs) that detect intracellular danger signals and form inflammasomes. Both undergo autoproteolysis, generating N-terminal (NT) and C-terminal (CT) fragments. The proteasome-mediated degradation of the NT releases the CT from autoinhibition, but the stimuli that trigger NT degradation have not been fully elucidated. Here, we show that several distinct agents that interfere with protein folding, including aminopeptidase inhibitors, chaperone inhibitors, and inducers of the unfolded protein response, accelerate NT degradation. However, these agents alone do not trigger inflammasome formation because the released CT fragments are physically sequestered by the serine dipeptidase DPP9. We show that DPP9-binding ligands must also be present to disrupt these complexes and allow the CT fragments to oligomerize into inflammasomes. Overall, these results indicate that NLRP1 and CARD8 detect a specific perturbation that induces both protein folding stress and DPP9 ligand accumulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Inflamassomos , Inflamassomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas NLR/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Dobramento de Proteína , Proteínas Adaptadoras de Sinalização CARD/metabolismo
13.
Sci Immunol ; 7(77): eabm7200, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36332009

RESUMO

The danger signals that activate the NLRP1 inflammasome have not been established. Here, we report that the oxidized, but not the reduced, form of thioredoxin-1 (TRX1) binds to NLRP1. We found that oxidized TRX1 associates with the NACHT-LRR region of NLRP1 in an ATP-dependent process, forming a stable complex that restrains inflammasome activation. Consistent with these findings, patient-derived and ATPase-inactivating mutations in the NACHT-LRR region that cause hyperactive inflammasome formation interfere with TRX1 binding. Overall, this work strongly suggests that reductive stress, the cellular perturbation that will eliminate oxidized TRX1 and abrogate the TRX1-NLRP1 interaction, is a danger signal that activates the NLRP1 inflammasome.


Assuntos
Inflamassomos , Tiorredoxinas , Humanos , Inflamassomos/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas NLR/metabolismo
14.
Cell Death Dis ; 11(8): 628, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796818

RESUMO

Canonical inflammasomes are innate immune signaling platforms that are formed in response to intracellular pathogen-associated signals and trigger caspase-1-dependent pyroptosis. Inflammasome formation and signaling is thought to mainly occur in myeloid cells, and in particular monocytes and macrophages. Here we show that small molecule inhibitors of dipeptidyl peptidases 8 and 9 (DPP8/9), which activate the related CARD8 and NLRP1 inflammasomes, also activate pyroptosis in human and rodent resting lymphocytes. We found that both CD4+ and CD8+ T cells were particularly sensitive to these inhibitors, although the sensitivity of T cells, like macrophages, varied considerably between species. In human T cells, we show that CARD8 mediates DPP8/9 inhibitor-induced pyroptosis. Intriguingly, although activated human T cells express the key proteins known to be required for CARD8-mediated pyroptosis, these cells were completely resistant to DPP8/9 inhibitors. Overall, these data show that resting lymphoid cells can activate at least one inflammasome, revealing additional cell types and states poised to undergo rapid pyroptotic cell death in response to danger-associated signals.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Ciclo Celular , Dipeptidases/antagonistas & inibidores , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Inflamassomos/metabolismo , Linfócitos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Dipeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Humanos , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Camundongos , Proteínas NLR , Inibidores de Proteases/farmacologia , Piroptose/efeitos dos fármacos , Ratos
15.
Cell Rep ; 33(2): 108264, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053349

RESUMO

Several cytosolic pattern-recognition receptors (PRRs) form multiprotein complexes called canonical inflammasomes in response to intracellular danger signals. Canonical inflammasomes recruit and activate caspase-1 (CASP1), which in turn cleaves and activates inflammatory cytokines and gasdermin D (GSDMD), inducing pyroptotic cell death. Inhibitors of the dipeptidyl peptidases DPP8 and DPP9 (DPP8/9) activate both the human NLRP1 and CARD8 inflammasomes. NLRP1 and CARD8 have different N-terminal regions but have similar C-terminal regions that undergo autoproteolysis to generate two non-covalently associated fragments. Here, we show that DPP8/9 inhibition activates a proteasomal degradation pathway that targets disordered and misfolded proteins for destruction. CARD8's N terminus contains a disordered region of ∼160 amino acids that is recognized and destroyed by this degradation pathway, thereby freeing its C-terminal fragment to activate CASP1 and induce pyroptosis. Thus, CARD8 serves as an alarm to signal the activation of a degradation pathway for disordered and misfolded proteins.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/química , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Inflamassomos/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Animais , Ácidos Borônicos/farmacologia , Dipeptídeos/farmacologia , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Células HEK293 , Humanos , Lisina/metabolismo , Camundongos , Proteólise , Proteostase , Células RAW 264.7 , Células THP-1
16.
Life Sci Alliance ; 3(3)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32051255

RESUMO

Pathogen-related signals induce a number of cytosolic pattern-recognition receptors (PRRs) to form canonical inflammasomes, which activate pro-caspase-1 and trigger pyroptotic cell death. All well-studied inflammasome-forming PRRs oligomerize with the adapter protein ASC (apoptosis-associated speck-like protein containing a CARD) to generate a large structure in the cytosol, which induces the dimerization, autoproteolysis, and activation of the pro-caspase-1 zymogen. However, several PRRs can also directly interact with pro-caspase-1 without ASC, forming smaller "ASC-independent" inflammasomes. It is currently thought that little, if any, pro-caspase-1 autoproteolysis occurs during, and is not required for, ASC-independent inflammasome signaling. Here, we show that the related human PRRs NLRP1 and CARD8 exclusively form ASC-dependent and ASC-independent inflammasomes, respectively, identifying CARD8 as the first canonical inflammasome-forming PRR that does not form an ASC-containing signaling platform. Despite their different structures, we discovered that both the NLRP1 and CARD8 inflammasomes require pro-caspase-1 autoproteolysis between the small and large catalytic subunits to induce pyroptosis. Thus, pro-caspase-1 self-cleavage is a required regulatory step for pyroptosis induced by human canonical inflammasomes.


Assuntos
Caspase 1/metabolismo , Piroptose/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Transporte/metabolismo , Células HEK293 , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Células THP-1
17.
ACS Chem Biol ; 14(11): 2424-2429, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31525884

RESUMO

Inflammasomes are multiprotein complexes formed in response to pathogens. NLRP1 and CARD8 are related proteins that form inflammasomes, but the pathogen-associated signal(s) and the molecular mechanisms controlling their activation have not been established. Inhibitors of the serine dipeptidyl peptidases DPP8 and DPP9 (DPP8/9) activate both NLRP1 and CARD8. Interestingly, DPP9 binds directly to NLRP1 and CARD8, and this interaction may contribute to the inhibition of NLRP1. Here, we use activity-based probes, reconstituted inflammasome assays, and mass spectrometry-based proteomics to further investigate the DPP9-CARD8 interaction. We show that the DPP9-CARD8 interaction, unlike the DPP9-NLRP1 interaction, is not disrupted by DPP9 inhibitors or CARD8 mutations that block autoproteolysis. Moreover, wild-type, but not catalytically inactive mutant, DPP9 rescues CARD8-mediated cell death in DPP9 knockout cells. Together, this work reveals that DPP9's catalytic activity and not its binding to CARD8 restrains the CARD8 inflammasome and thus suggests the binding interaction likely serves some other biological purpose.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Dipeptidases/metabolismo , Células HEK293 , Humanos , Mutação , Proteínas NLR , Organofluorfosfonatos/metabolismo , Inibidores de Proteases/metabolismo , Ligação Proteica , Conformação Proteica , Transdução de Sinais
18.
Cell Death Dis ; 10(8): 587, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383852

RESUMO

Intracellular pathogenic structures or activities stimulate the formation of inflammasomes, which recruit and activate caspase-1 and trigger an inflammatory form of cell death called pyroptosis. The well-characterized mammalian inflammasome sensor proteins all detect one specific type of signal, for example double-stranded DNA or bacterial flagellin. Remarkably, NLRP1 was the first protein discovered to form an inflammasome, but the pathogenic signal that NLRP1 detects has not yet been identified. NLRP1 is highly polymorphic, even among inbred rodent strains, and it has been suggested that these diverse NLRP1 alleles may have evolved to detect entirely different stimuli. Intriguingly, inhibitors of the serine proteases DPP8 and DPP9 (DPP8/9) were recently shown to activate human NLRP1, its homolog CARD8, and several mouse NLRP1 alleles. Here, we show now that DPP8/9 inhibitors activate all functional rodent NLRP1 alleles, indicating that DPP8/9 inhibition induces a signal detected by all NLRP1 proteins. Moreover, we discovered that the NLRP1 allele sensitivities to DPP8/9 inhibitor-induced and Toxoplasma gondii-induced pyroptosis are strikingly similar, suggesting that DPP8/9 inhibition phenocopies a key activity of T. gondii. Overall, this work indicates that the highly polymorphic NLRP1 inflammasome indeed senses a specific signal like the other mammalian inflammasomes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Proteínas Reguladoras de Apoptose/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antígenos de Bactérias/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Toxinas Bacterianas/farmacologia , Ácidos Borônicos/farmacologia , Dipeptídeos/farmacologia , Feminino , Células HEK293 , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Proteínas do Tecido Nervoso/metabolismo , Piroptose/efeitos dos fármacos , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Inibidores de Serina Proteinase/farmacologia , Toxoplasma/imunologia , Transfecção
19.
Cell Chem Biol ; 26(6): 901-907.e6, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31006619

RESUMO

The dipeptidyl peptidases (DPPs) regulate hormones, cytokines, and neuropeptides by cleaving dipeptides after proline from their amino termini. Due to technical challenges, many DPP substrates remain unknown. Here, we introduce a simple method, termed CHOPS (chemical enrichment of protease substrates), for the discovery of protease substrates. CHOPS exploits a 2-pyridinecarboxaldehyde (2PCA)-biotin probe, which selectively biotinylates protein N-termini except those with proline in the second position. CHOPS can, in theory, discover substrates for any protease, but is particularly well suited to discover canonical DPP substrates, as cleaved but not intact DPP substrates can be identified by gel electrophoresis or mass spectrometry. Using CHOPS, we show that DPP8 and DPP9, enzymes that control the Nlrp1 inflammasome through an unknown mechanism, do not directly cleave Nlrp1. We further show that DPP9 robustly cleaves short peptides but not full-length proteins. More generally, this work delineates a practical technology for identifying protease substrates, which we anticipate will complement available "N-terminomic" approaches.


Assuntos
Peptídeo Hidrolases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Biotina/química , Biotina/metabolismo , Dipeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Humanos , Inflamassomos/metabolismo , Estrutura Molecular , Proteínas NLR , Peptídeo Hidrolases/química , Piridinas/química , Piridinas/metabolismo , Especificidade por Substrato
20.
Science ; 364(6435): 82-85, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30872531

RESUMO

Intracellular pathogens and danger signals trigger the formation of inflammasomes, which activate inflammatory caspases and induce pyroptosis. The anthrax lethal factor metalloprotease and small-molecule DPP8/9 inhibitors both activate the NLRP1B inflammasome, but the molecular mechanism of NLRP1B activation is unknown. In this study, we used genome-wide CRISPR-Cas9 knockout screens to identify genes required for NLRP1B-mediated pyroptosis. We discovered that lethal factor induces cell death via the N-end rule proteasomal degradation pathway. Lethal factor directly cleaves NLRP1B, inducing the N-end rule-mediated degradation of the NLRP1B N terminus and freeing the NLRP1B C terminus to activate caspase-1. DPP8/9 inhibitors also induce proteasomal degradation of the NLRP1B N terminus but not via the N-end rule pathway. Thus, N-terminal degradation is the common activation mechanism of this innate immune sensor.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Toxinas Bacterianas/metabolismo , Inflamassomos/metabolismo , Proteólise , Piroptose/fisiologia , Animais , Proteínas Reguladoras de Apoptose/genética , Sistemas CRISPR-Cas , Caspase 1/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Técnicas de Inativação de Genes , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Piroptose/genética , Células RAW 264.7 , Inibidores de Serina Proteinase/farmacologia , Células THP-1 , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA