Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Physiol ; 602(13): 3151-3168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38924526

RESUMO

Aquaporin-4 (AQP4) is the main water channel in brain and is enriched in perivascular astrocyte processes abutting brain microvessels. There is a rich literature on the role of AQP4 in experimental stroke. While its role in oedema formation following middle cerebral artery occlusion (MCAO) has been studied extensively, its specific impact on infarct volume remains unclear. This study investigated the effects of total and partial AQP4 deletion on infarct volume in mice subjected to distal medial cerebral artery (dMCAO) occlusion. Compared to MCAO, this model induces smaller infarcts confined to neocortex, and less oedema. We show that AQP4 deletion significantly reduced infarct volume as assessed 1 week after dMCAO, suggesting that the role of AQP4 in stroke goes beyond its effect on oedema formation and dissolution. The reduction in infarct volume was associated with increased astrocyte reactivity in the peri-infarct areas. No significant differences were observed in the number of microglia among the genotypes. These findings provide new insights in the role of AQP4 in ischaemic injury indicating that AQP4 affects both infarct volume and astrocyte reactivity in the peri-infarct zone. KEY POINTS: Aquaporin-4 (AQP4) is the main water channel in brain and is enriched in perivascular astrocyte processes abutting microvessels. A rich literature exists on the role of AQP4 in oedema formation following middle cerebral artery occlusion (MCAO). We investigated the effects of total and partial AQP4 deletion on infarct volume in mice subjected to distal medial cerebral artery occlusion (dMCAO), a model inducing smaller infarcts confined to neocortex and less oedema compared to MCAO. AQP4 deletion significantly reduced infarct volume 1 week after dMCAO, suggesting a broader role for AQP4 in stroke beyond oedema formation. The reduction in infarct volume was associated with increased astrocyte reactivity in the peri-infarct areas, while no significant differences were observed in the number of microglia among the genotypes. These findings provide new insights into the role of AQP4 in stroke, indicating that AQP4 affects both infarct volume and astrocyte reactivity in the peri-infarct zone.


Assuntos
Aquaporina 4 , Astrócitos , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Camundongos , Masculino , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/genética , Camundongos Knockout , Edema Encefálico/patologia , Edema Encefálico/metabolismo , Edema Encefálico/genética
2.
Glia ; 67(6): 1138-1149, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30803043

RESUMO

Proper function of the retina depends heavily on a specialized form of retinal glia called Müller cells. These cells carry out important homeostatic functions that are contingent on their polarized nature. Specifically, the Müller cell endfeet that contact retinal microvessels and the corpus vitreum show a tenfold higher concentration of the inwardly rectifying potassium channel Kir 4.1 than other Müller cell plasma membrane domains. This highly selective enrichment of Kir 4.1 allows K+ to be siphoned through endfoot membranes in a special form of spatial buffering. Here, we show that Kir 4.1 is enriched in endfoot membranes through an interaction with ß1-syntrophin. Targeted disruption of this syntrophin caused a loss of Kir 4.1 from Müller cell endfeet without affecting the total level of Kir 4.1 expression in the retina. Targeted disruption of α1-syntrophin had no effect on Kir 4.1 localization. Our findings show that the Kir 4.1 aggregation that forms the basis for K+ siphoning depends on a specific syntrophin isoform that colocalizes with Kir 4.1 in Müller endfoot membranes.


Assuntos
Proteínas Associadas à Distrofina/deficiência , Células Ependimogliais/metabolismo , Deleção de Genes , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Retina/metabolismo , Animais , Proteínas Associadas à Distrofina/genética , Células Ependimogliais/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canais de Potássio Corretores do Fluxo de Internalização/genética , Agregados Proteicos/fisiologia , Retina/patologia
3.
Elife ; 112022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35833623

RESUMO

Increased astrocytic Ca2+ signaling has been shown in Alzheimer's disease mouse models, but to date no reports have characterized behaviorally induced astrocytic Ca2+ signaling in such mice. Here, we employ an event-based algorithm to assess astrocytic Ca2+ signals in the neocortex of awake-behaving tg-ArcSwe mice and non-transgenic wildtype littermates while monitoring pupil responses and behavior. We demonstrate an attenuated astrocytic Ca2+ response to locomotion and an uncoupling of pupil responses and astrocytic Ca2+ signaling in 15-month-old plaque-bearing mice. Using the genetically encoded fluorescent norepinephrine sensor GRABNE, we demonstrate a reduced norepinephrine signaling during spontaneous running and startle responses in the transgenic mice, providing a possible mechanistic underpinning of the observed reduced astrocytic Ca2+ responses. Our data points to a dysfunction in the norepinephrine-astrocyte Ca2+ activity axis, which may account for some of the cognitive deficits observed in Alzheimer's disease.


Neurodegenerative conditions such as Parkinson's or Alzheimer's disease are characterized by neurons dying and being damaged. Yet neurons are only one type of brain actors; astrocytes, for example, are star-shaped 'companion' cells that have recently emerged as being able to fine-tune neuronal communication. In particular, they can respond to norepinephrine, a signaling molecule that acts to prepare the brain and body for action. This activation results, for instance, in astrocytes releasing chemicals that can act on neurons. Certain cognitive symptoms associated with Alzheimer's disease could be due to a lack of norepinephrine. In parallel, studies in anaesthetized mice have shown perturbed astrocyte signaling in a model of the condition. Disrupted norepinephrine-triggered astrocyte signaling could therefore be implicated in the symptoms of the disease. Experiments in awake mice are needed to investigate this link, especially as anesthesia is known to disrupt the activity of astrocytes. To explore this question, Åbjørsbråten, Skaaraas et al. conducted experiments in naturally behaving mice expressing mutations found in patients with early-onset Alzheimer's disease. These mice develop hallmarks of the disorder. Compared to their healthy counterparts, these animals had reduced astrocyte signaling when running or being startled. Similarly, a fluorescent molecular marker for norepinephrine demonstrated less signaling in the modified mice compared to healthy ones. Over 55 million individuals currently live with Alzheimer's disease. The results by Åbjørsbråten, Skaaraas et al. suggest that astrocyte­norepinephrine communication may be implicated in the condition, an avenue of research that could potentially lead to developing new treatments.


Assuntos
Doença de Alzheimer , Astrócitos , Doença de Alzheimer/genética , Animais , Astrócitos/fisiologia , Sinalização do Cálcio/fisiologia , Camundongos , Camundongos Transgênicos , Norepinefrina , Vigília/fisiologia
4.
J Alzheimers Dis ; 83(4): 1651-1663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34459401

RESUMO

BACKGROUND: Vascular pathology is a common feature in patients with advanced Alzheimer's disease, with cerebral amyloid angiopathy (CAA) and microvascular changes commonly observed at autopsies and in genetic mouse models. However, despite a plethora of studies addressing the possible impact of CAA on brain vasculature, results have remained contradictory, showing reduced, unchanged, or even increased capillary densities in human and rodent brains overexpressing amyloid-ß in Alzheimer's disease and Down's syndrome. OBJECTIVE: We asked if CAA is associated with changes in angiogenetic factors or receptors and if so, whether this would translate into morphological alterations in pericyte coverage and vessel density. METHODS: We utilized the transgenic mice carrying the Arctic (E693G) and Swedish (KM670/6701NL) amyloid precursor protein which develop severe CAA in addition to parenchymal plaques. RESULTS: The main finding of the present study was that CAA in Tg-ArcSwe mice is associated with upregulated angiopoietin and downregulated hypoxia-inducible factor. In the same mice, we combined immunohistochemistry and electron microscopy to quantify the extent of CAA and investigate to which degree vessels associated with amyloid plaques were pathologically affected. We found that despite a severe amount of CAA and alterations in several angiogenetic factors in Tg-ArcSwe mice, this was not translated into significant morphological alterations like changes in pericyte coverage or vessel density. CONCLUSION: Our data suggest that CAA does not impact vascular density but might affect capillary turnover by causing changes in the expression levels of angiogenetic factors.


Assuntos
Doença de Alzheimer/patologia , Angiopoietinas , Angiopatia Amiloide Cerebral/patologia , Hipóxia/metabolismo , Camundongos Transgênicos , Regulação para Cima , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos , Pericitos/patologia , Placa Amiloide/patologia
5.
Biochim Biophys Acta Biomembr ; 1863(8): 183616, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33872576

RESUMO

Aquaporin-4 (AQP4) water channels and gap junction proteins (connexins) are two classes of astrocytic membrane proteins critically involved in brain water and ion homeostasis. AQP4 channels are anchored by α1-syntrophin to the perivascular astrocytic endfoot membrane domains where they control water flux at the blood-brain interface while connexins cluster at the lateral aspects of the astrocytic endfeet forming gap junctions that allow water and ions to dissipate through the astrocyte syncytium. Recent studies have pointed to an interdependence between astrocytic AQP4 and astrocytic gap junctions but the underlying mechanism remains to be explored. Here we use a novel transgenic mouse line to unravel whether ß1-syntrophin (coexpressed with α1-syntrophin in astrocytic plasma membranes) is implicated in the expression of AQP4 isoforms and formation of gap junctions in brain. Our results show that while the effect of ß1-syntrophin deletion is rather limited, double knockout of α1- and ß1-syntrophin causes a downregulation of the novel AQP4 isoform AQP4ex and an increase in the number of astrocytic gap junctions. The present study highlight the importance of syntrophins in orchestrating specialized functional domains of brain astrocytes.


Assuntos
Aquaporina 4/genética , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/genética , Conexina 43/genética , Proteínas Associadas à Distrofina/genética , Proteínas de Membrana/genética , Proteínas Musculares/genética , Animais , Membrana Celular/genética , Junções Comunicantes/genética , Regulação da Expressão Gênica/genética , Homeostase/genética , Íons/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos/genética , Camundongos Transgênicos/metabolismo , Água/metabolismo
6.
Mol Brain ; 13(1): 40, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32178707

RESUMO

Retinal Müller cells are highly polarized macroglial cells with accumulation of the aquaporin-4 (AQP4) water channel and the inwardly rectifying potassium channel Kir4.1 at specialized endfoot membrane domains abutting microvessels and corpus vitreum. Proper water and potassium homeostasis in retina depends on these membrane specializations. Here we show that targeted deletion of ß1-syntrophin leads to a partial loss of AQP4 from perivascular Müller cell endfeet and that a concomitant deletion of both α1- and ß1-syntrophin causes a near complete loss of AQP4 from both perivascular and subvitreal endfoot membranes. α1-syntrophin is normally very weakly expressed in Müller cell endfeet but ß1-syntrophin knockout mice display an increased amount of α1-syntrophin at these sites. We suggest that upregulation of perivascular α1-syntrophin restricts the effect of ß1-syntrophin deletion. The present findings indicate that ß1-syntrophin plays an important role in maintaining the functional polarity of Müller cells and that α1-syntrophin can partially substitute for ß1-syntrophin in AQP4 anchoring. Functional polarization of Müller cells thus depends on an interplay between two syntrophin isoforms.


Assuntos
Proteínas Associadas à Distrofina/metabolismo , Células Ependimogliais/metabolismo , Retina/citologia , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Deleção de Genes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA