Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Revista
Intervalo de ano de publicação
1.
Cureus ; 16(5): e60417, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38882963

RESUMO

Background and objective Several blood biochemical parameters are used to biomonitor coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Reduced serum cholinesterase (ChE) has been suggested to be a predictive indicator of the severity and outcome of COVID-19 infection. This study aimed to examine serum ChE activity in hospitalized and terminally ill COVID-19 patients with cytokine storm and evaluate the enzyme for the in vitro ChE-inhibitory activity of the organophosphate dichlorvos. Methods We determined the serum ChE activity, electrometrically, among hospitalized COVID-19-cytokine storm patients and their non-cytokine storm counterparts. Aliquots of serum samples from healthy volunteers, COVID-19-cytokine storm patients, and non-cytokine storm COVID-19 patients were pooled separately. They were incubated in vitro for 10 minutes with dichlorvos at 0.25 or 0.5 µM. Serum samples from the three groups were subjected to ChE inhibition temporally (5-60 minutes) by 0.25 µM dichlorvos to evaluate the kinetics of enzyme inhibition using steady-state kinetics. Results Of the 165 hospitalized patients with COVID-19, 33 (20%) suffered from the cytokine storm. Serum ChE activity of female COVID-19 patients with cytokine storm was significantly lower than that of the non-cytokine storm counterparts. Risk analysis of reduced serum ChE activity (≥20%) among the 33 COVID-19 patients with cytokine storm compared to 111 non-cytokine storm COVID-19 patients revealed that the former were significantly at risk of reduced enzyme activity. In vitro, dichlorvos at 0.25 µM and 0.5 µM significantly inhibited serum ChE activity in all the groups. The COVID-19-cytokine storm group was the least affected. Dichlorvos at 0.25 µM progressively (5-60 minutes) inhibited serum ChE activity. The inhibition kinetic parameters in COVID-19-cytokine storm patients showed a decrease in the half-life of inhibition (14.54%), inhibition rate (51.46%), and total inhibition time (14.55%). Conclusions Reduced serum ChE in COVID-19 patients with cytokine storm could be adopted as a potential additional laboratory examination tool for bedside risk assessment. The in vitro inhibition profile of serum ChE activity by dichlorvos in COVID-19-cytokine storm patients suggests reduced susceptibility of the enzyme to inhibition. The response of COVID-19 patients to ChE-inhibiting medications should be cautiously evaluated with prior in vitro tests.

2.
Cureus ; 15(11): e48834, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38106718

RESUMO

Background and objective Polypharmacy is prevalent in coronavirus disease 2019 (COVID-19) patients with severe disease. However, information on polypharmacy among COVID-19 patients who also suffer from cytokine storm is scarce. In light of this, the purpose of the present study was to assess the incidence of polypharmacy and in silico prediction of potential body proteins targeted by these drugs among hospitalized COVID-19 patients who were identified to have the additional burden of cytokine storm in the city of Duhok, Kurdistan Region, Iraq. Methods This was a cross-sectional observational study conducted from June 2021 to April 2022; the phenomena of major polypharmacy (six to nine medications) and excessive polypharmacy (≥10 medications) were documented among 33 (15 males and 18 females) COVID-19 patients with cytokine storm during their hospital stay (8-45 days) in Duhok, Kurdistan Region, Iraq. The SwissTargetPrediction program was utilized in silico to predict and identify human body proteins that could be potentially targeted by selected medications involved in polypharmacy. Results All patients had tested positive for COVID-19 via PCR testing, and they showed different signs and symptoms of the disease. None of the patients recovered and all of them deceased. All 33 patients received many therapeutic agents that ranged in number from eight to 20/patient during their hospital stay. The mean number of medications was 15 ± 3. We identified 2/33 (6%) patients with major polypharmacy (eight and nine) and 31/33 (94%) with excessive polypharmacy (15.5 ± 2.7). The total number of medications identified in polypharmacy was 37, excluding vitamins, minerals, and intravenous solutions. The frequency of medications administered was as follows: antibiotics (67, 13.7%), mucolytic agents (56, 11.5%), corticosteroids (54, 11%), anticoagulants (48, 9.8%), antiviral agents (41, 8.4%), antihypertensive agents (32, 6.5%), analgesics (28, 5.7%), antifungal drugs (27, 5.5%), antidiabetics (26, 5.3%), and other medications (2-19, 0.41-3.9%). Using the SwissTargetPrediction program, various drugs including antiviral agents involved in polypharmacy were found to target, in silico, body proteins at a prediction percentage that ranged from 6.7% to 40%. Conclusions Major and extensive polypharmacy conditions were identified in hospitalized COVID-19 patients suffering from cytokine storm. The severity of COVID-19 with cytokine storm, comorbidities, and hospitalization were key factors associated with polypharmacy in the patients. The SwissTargetPrediction web server is useful for predicting in silico potential human body protein targets that could possibly be sources of additional information on the adverse/toxic effects of polypharmacy medications administered concurrently. Further research in current medication protocols prescribed for advanced COVID-19 illness with cytokine storm is warranted to gain deeper insights into the topic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA