Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Sensors (Basel) ; 22(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35890791

RESUMO

Optical immunosensors represent a research field of continuously increasing interest due to their unique features, which can mainly be attributed to the high-affinity and specific antibodies they use as biorecognition elements, combined with the advantageous characteristics of the optical transducing systems these sensors employ. The present work describes new developments in the field, focusing on recent bioanalytical applications (2021-2022) of labeled and label-free optical immunosensors. Special attention is paid to a specific immunosensing platform based on White Light Reflectance Spectroscopy, in which our labs have gained specific expertise; this platform is presented in detail so as to include developments, improvements, and bioanalytical applications since the mid-2000s. Perspectives on the field are been briefly discussed as well, highlighting the potential of optical immunosensors to eventually reach the state of a reliable, highly versatile, and widely applicable analytical tool suitable for use at the Point-of-Care.


Assuntos
Técnicas Biossensoriais , Anticorpos/química , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Análise Espectral
2.
Analyst ; 146(2): 529-537, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33179631

RESUMO

Mozzarella di Bufala Campana and Feta are two cheeses with Protected Designation of Origin the fraudulent adulteration of which with bovine milk must be routinely checked to ensure that consumers actually buy these high-end products and avoid health issues related to bovine milk allergy. Here, we employed, for the first time, a silicon-based photonic immunosensor for the detection of mozzarella and feta adulteration with bovine milk. The photonic immunosensor used relies on Mach-Zehnder interferometers monolithically integrated along with their respective light sources on a silicon chip. A rabbit polyclonal antiserum raised against bovine κ-casein was used for the development of a competitive immunoassay realized in three steps, including a reaction with the antiserum, a biotinylated anti-rabbit IgG antibody, and streptavidin. The implementation of this assay configuration significantly reduced the non-specific signal due to the cheese matrix, and allowed completion of the assay in ∼9 min. After optimization of all assay conditions, bovine cheese could be quantified in mozzarella or feta at concentrations as low as 0.5 and 0.25% (w/w), respectively; both quantification limits were below the maximum allowable content of bovine milk in mozzarella and feta (1% w/w) according to the EU regulations. Equally important, the assays were reproducible with intra- and inter-assay coefficients of variation <10%, and exhibited a wide linear dynamic range that extended up to 50 and 25% (w/w) for mozzarella and feta, respectively. Taking into account its performance, the proposed immunosensor may be transformed to a new tool against fraudulent activities in the dairy industry.


Assuntos
Técnicas Biossensoriais/métodos , Queijo/análise , Imunoensaio/métodos , Leite , Fótons , Silício/química , Animais , Bovinos , Contaminação de Alimentos , Qualidade dos Alimentos , Fatores de Tempo
3.
Sensors (Basel) ; 21(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920297

RESUMO

Biosensors represent an attractive approach for fast bacteria detection. Here, we present an optical biosensor for the detection of Salmonella typhimurium lipopolysaccharide (LPS) and Salmonella bacteria in drinking water, based on white light reflectance spectroscopy. The sensor chip consisted of a Si die with a thin SiO2 layer on top that was transformed into a biosensor through the immobilization of Salmonella LPS. The optical setup included a reflection probe with seven 200 µm fibers, a visible and near-infrared light source, and a spectrometer. The six fibers at the reflection probe circumference were coupled with the light source and illuminated the biosensor chip vertically, whereas the central fiber collected the reflected light and guided it to the spectrometer. A competitive immunoassay configuration was adopted for the analysis. Accordingly, a mixture of LPS or bacteria solution, pre-incubated for 15 min, with an anti-Salmonella LPS antibody was pumped over the chip followed by biotinylated secondary antibody and streptavidin for signal enhancement. The binding of the free anti-Salmonella antibody to chip-immobilized LPS led to a shift of the reflectance spectrum that was inversely related to the analyte concentration (LPS or bacteria) in the calibrators or samples. The total assay duration was 15 min, and the detection limits achieved were 4 ng/mL for LPS and 320 CFU/mL for bacteria. Taking into account the low detection limits, the short analysis time, and the small size of the chip and instrumentation employed, the proposed immunosensor could find wide application for bacteria detection in drinking water.


Assuntos
Técnicas Biossensoriais , Água Potável , Imunoensaio , Salmonella typhimurium , Dióxido de Silício , Análise Espectral
4.
Anal Chem ; 90(15): 9559-9567, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29999303

RESUMO

A silicon-based miniaturized sensor chip combined with an advanced microfluidic module for the simultaneous, label-free immunochemical determination of four allergens, bovine milk protein, peanut protein, soy protein, and gliadin, is presented. The sensor chip consists of an array of 10 broad-band Mach-Zehnder interferometers (BB-MZIs) monolithically integrated on silicon, along with their respective broad-band light sources. The BB-MZIs were biofunctionalized with the targeted allergens and their responses during immunoreaction were monitored by multiplexing their transmission spectra through an external miniaturized spectrometer. The assay is performed by running mixtures of calibrators or samples with the antibodies against the four allergens followed by an antispecies specific antibodies solution. Employing a fluidic module of nearly one-dimensional geometry, that provided for uniform delivery of the reagents, CV values <6% were achieved for the responses of the 10 BB-MZIs, allowing for reliable multianalyte determinations. The analysis is completed in 6.5 min, and the detection limits were 0.04 µg/mL for bovine k-casein, 1.0 µg/mL for peanut protein, 0.80 µg/mL for soy protein, and 0.10 µg/mL for gliadin. The assays were accurate (recoveries 88-118%) and repeatable (intra- and interassay CVs <7% for all four allergens). Finally, the sensor was evaluated by analyzing samples from a cleaning in place system (CIP) of a dairy industry and the results obtained were in good agreement with those received by the respective ELISAs. The analytical characteristics of the sensor combined with the short analysis time and the small chip size make the proposed system an ideal tool for on-site multianalyte determinations.


Assuntos
Alérgenos/análise , Técnicas Biossensoriais/instrumentação , Interferometria/instrumentação , Silício/química , Animais , Arachis/química , Técnicas Biossensoriais/economia , Caseínas/análise , Bovinos , Análise de Alimentos/economia , Análise de Alimentos/instrumentação , Gliadina/análise , Interferometria/economia , Dispositivos Lab-On-A-Chip/economia , Limite de Detecção , Proteínas de Vegetais Comestíveis/análise , Proteínas de Soja/análise , Fatores de Tempo
5.
Analyst ; 140(4): 1127-39, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25535629

RESUMO

Three multi-step multi-molecular approaches using the biotin-streptavidin system to contact-print DNA arrays on SiO2 surfaces modified with (3-glycidoxypropyl)trimethoxysilane are examined after each deposition/reaction step by atomic force microscopy, X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry. Surface modification involves the spotting of preformed conjugates of biotinylated oligonucleotides with streptavidin onto surfaces coated with biotinylated bovine serum albumin b-BSA (approach I) or the spotting of biotinylated oligonucleotides onto a streptavidin coating, the latter prepared through a reaction with immobilized b-BSA (approach II) or direct adsorption (approach III). AFM micrographs, quantified by autocorrelation and height histogram parameters (e.g. roughness), reveal uniform coverage after each modification step with distinct nanostructures after the reaction of biotinylated BSA with streptavidin or of a streptavidin conjugate with biotinylated oligonucleotides. XPS relates the immobilization of biomolecules with covalent binding to the epoxy-silanized surface. Protein coverage, estimated from photoelectron attenuation, shows that regarding streptavidin the highest and the lowest immobilization efficiency is achieved by following approaches I and III, respectively, as confirmed by TOF-SIMS microanalysis. The size of the DNA spot reflects the contact radius of the printed droplet and increases with protein coverage (and roughness) prior to the spotting, as epoxy-silanized surfaces are hardly hydrophilic. Representative TOF-SIMS images show sub-millimeter spots: uniform for approach I, doughnut-like (with a small non-zero minimum) for approach II, both with coffee-rings or peak-shaped for approach III. Spot features, originating from pinned contact lines and DNA surface binding and revealed by complementary molecular distributions (all material, DNA, streptavidin, BSA, epoxy, SiO2), indicate two modes of droplet evaporation depending on the details of each applied approach.


Assuntos
Biotina/química , Ácidos Nucleicos Imobilizados/química , Nanoestruturas/química , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos/química , Estreptavidina/química , Adsorção , Animais , Biotinilação , Bovinos , Proteínas Imobilizadas/química , Microscopia de Força Atômica , Nanoestruturas/ultraestrutura , Espectroscopia Fotoeletrônica , Soroalbumina Bovina/química , Silanos/química , Dióxido de Silício/química , Espectrometria de Massa de Íon Secundário , Propriedades de Superfície
6.
Anal Bioanal Chem ; 407(14): 3995-4004, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25796524

RESUMO

The label-free detection of bovine milk in goat milk through a miniaturized optical biosensor is presented. The biosensor consists of ten planar silicon nitride waveguide Broad-Band Mach-Zehnder interferometers (BB-MZIs) monolithically integrated and self-aligned with their respective silicon LEDs on the same Si chip. The BB-MZIs were transformed to biosensing transducers by functionalizing their sensing arm with bovine k-casein. Measurements were performed by continuously recording the transmission spectra of each interferometer through an external spectrometer. The amount of bovine milk in goat milk was determined through a competitive immunoassay by passing over the sensor mixtures of anti-k-casein antibodies with the calibrators or the samples. The output spectra of each BB-MZI recorded during the reaction were subjected to Discrete Fourier Transform in order to convert the observed spectral shifts to phase shifts in the wavenumber domain. The method had a detection limit of 0.04 % (v/v) bovine milk in goat milk, dynamic range 0.1-1.0 % (v/v), recoveries 93-110 %, and intra- and inter-assay coefficients of variation less than 12 and 15 %, respectively. The proposed biosensor compared well in terms of analytical performance with a competitive ELISA developed using the same monoclonal antibodies. Nevertheless, the duration of the biosensor assay was 10 min whereas the ELISA required 2 h. Thus, the fast and sensitive determinations along with the small size of the sensor make it ideal for incorporation into portable devices for assessment of goat or ewe's milk adulteration with bovine milk at the point-of-need.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Contaminação de Alimentos , Leite/química , Animais , Anticorpos , Fenômenos Eletromagnéticos , Cabras , Miniaturização , Fenômenos Ópticos , Fatores de Tempo
7.
Sensors (Basel) ; 14(9): 16258-73, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25184490

RESUMO

The alcoholic fermentation of Savatiano must variety was initiated under laboratory conditions and monitored daily with a gas sensor array without any pre-treatment steps. The sensor array consisted of eight interdigitated chemocapacitors (IDCs) coated with specific polymers. Two batches of fermented must were tested and also subjected daily to standard chemical analysis. The chemical composition of the two fermenting musts differed from day one of laboratory monitoring (due to different storage conditions of the musts) and due to a deliberate increase of the acetic acid content of one of the musts, during the course of the process, in an effort to spoil the fermenting medium. Sensor array responses to the headspace of the fermenting medium were compared with those obtained either for pure or contaminated samples with controlled concentrations of standard ethanol solutions of impurities. Results of data processing with Principal Component Analysis (PCA), demonstrate that this sensing system could discriminate between a normal and a potential spoiled grape must fermentation process, so this gas sensing system could be potentially applied during wine production as an auxiliary qualitative control instrument.


Assuntos
Reatores Biológicos/microbiologia , Condutometria/instrumentação , Etanol/metabolismo , Análise em Microsséries/instrumentação , Saccharomyces cerevisiae/metabolismo , Vitis/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Capacitância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Compostos Orgânicos Voláteis/análise
8.
Biosensors (Basel) ; 13(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37754099

RESUMO

The COVID-19 pandemic has emphasized the urgent need for point-of-care methods suitable for the rapid and reliable diagnosis of viral infections. To address this demand, we report the rapid, label-free simultaneous determination of two SARS-CoV-2 proteins, namely, the nucleoprotein and the receptor binding domain peptide of S1 protein, by implementing a bioanalytical device based on Multi Area Reflectance Spectroscopy. Simultaneous detection of these two proteins is achieved by using silicon chips with adjacent areas of different silicon dioxide thickness on top, each of which is modified with an antibody specific to either the nucleoprotein or the receptor binding domain of SARS-CoV-2. Both areas were illuminated by a single probe that also collected the reflected light, directing it to a spectrometer. The online conversion of the combined reflection spectra from the two silicon dioxide areas into the respective adlayer thickness enabled real-time monitoring of immunoreactions taking place on the two areas. Several antibodies have been tested to define the pair, providing the higher specific signal following a non-competitive immunoassay format. Biotinylated secondary antibodies and streptavidin were used to enhance the specific signal. Both proteins were detected in less than 12 min, with detection limits of 1.0 ng/mL. The assays demonstrated high repeatability with intra- and inter-assay coefficients of variation lower than 10%. Moreover, the recovery of both proteins from spiked samples prepared in extraction buffer from a commercial self-test kit for SARS-CoV-2 collection from nasopharyngeal swabs ranged from 90.0 to 110%. The short assay duration in combination with the excellent analytical performance and the compact instrument size render the proposed device and assay suitable for point-of-care applications.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , COVID-19/diagnóstico , Análise Espectral , Nucleoproteínas , Anticorpos
9.
Biosensors (Basel) ; 13(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36832050

RESUMO

Cortisol is a steroid hormone that is involved in a broad range of physiological processes in human/animal organisms. Cortisol levels in biological samples are a valuable biomarker, e.g., of stress and stress-related diseases; thus, cortisol determination in biological fluids, such as serum, saliva and urine, is of great clinical value. Although cortisol analysis can be performed with chromatography-based analytical techniques, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS), conventional immunoassays (radioimmunoassays (RIAs), enzyme-linked immunosorbent assays (ELISAs), etc.) are considered the "gold standard" analytical methodology for cortisol, due to their high sensitivity along with a series of practical advantages, such as low-cost instrumentation, an assay protocol that is fast and easy to perform, and high sample throughput. Especially in recent decades, research efforts have focused on the replacement of conventional immunoassays by cortisol immunosensors, which may offer further improvements in the field, such as real-time analysis at the point of care (e.g., continuous cortisol monitoring in sweat through wearable electrochemical sensors). In this review, most of the reported cortisol immunosensors, mainly electrochemical and also optical ones, are presented, focusing on their immunosensing/detection principles. Future prospects are also briefly discussed.


Assuntos
Técnicas Biossensoriais , Hidrocortisona , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Imunoensaio
10.
Talanta ; 258: 124403, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889192

RESUMO

The simultaneous determination of two inflammatory diseases biomarkers, namely procalcitonin (PCT) and interleukin-6 (IL-6), in human serum samples employing a Point-of-Care device based on Multi Area Reflectance Spectroscopy is presented. Dual-analyte detection was achieved using silicon chips with two silicon dioxide areas of different thickness, one functionalized with an antibody specific for PCT and the other with an antibody specific for IL-6. The assay included reaction of immobilized capture antibodies with mixtures of PCT and IL-6 calibrators with the biotinylated detection antibodies, streptavidin and biotinylated-BSA. The reader provided for the automated execution of the assay procedure, as well as for the collection and processing of the reflected light spectrum, the shift of which is correlated to analytes concentration in the sample. The assay was completed in 35 min and the detection limits for PCT and IL-6 were 2.0 and 0.01 ng/mL respectively. The dual-analyte assay was characterized by high reproducibility (the intra- and inter-assay coefficients of variation were less than 10% for both analytes) and accuracy (the percent recovery values ranged from 80 to 113% for both analytes). Moreover, the values determined for the two analytes in human serum samples with the assay developed were in good agreement with the values determined for the same samples by clinical laboratory methods. These results support the potential of the proposed biosensing device application for inflammatory biomarkers determination at the Point-of-Need.


Assuntos
Técnicas Biossensoriais , Interleucina-6 , Pró-Calcitonina , Humanos , Anticorpos Imobilizados/química , Biomarcadores , Imunoensaio/métodos , Interleucina-6/sangue , Sistemas Automatizados de Assistência Junto ao Leito , Pró-Calcitonina/sangue , Reprodutibilidade dos Testes
11.
Biosensors (Basel) ; 12(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35884310

RESUMO

The consumption of water and milk contaminated with bacteria can lead to foodborne disease outbreaks. For this reason, the development of rapid and sensitive analytical methods for bacteria detection is of primary importance for public health protection. Here, a miniaturized immunosensor based on broadband Mach-Zehnder Interferometry for the simultaneous determination of S. typhimurium and E. coli O157:H7 in drinking water and milk is presented. For the assay, mixtures of bacteria solutions with anti-bacteria-specific antibodies were run over the chip, followed by solutions of biotinylated anti-species-specific antibody and streptavidin. The assay was fast (10 min for water, 15 min for milk), accurate, sensitive (LOD: 40 cfu/mL for S. typhimurium; 110 cfu/mL for E. coli) and reproducible. The analytical characteristics achieved combined with the small chip size make the proposed biosensor suitable for on-site bacteria determination in drinking water and milk samples.


Assuntos
Técnicas Biossensoriais , Água Potável , Escherichia coli O157 , Animais , Técnicas Biossensoriais/métodos , Microbiologia de Alimentos , Imunoensaio/métodos , Leite/microbiologia , Salmonella typhimurium , Silício
12.
Biosensors (Basel) ; 12(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36291014

RESUMO

Ochratoxin A (OTA) is one of the most toxic naturally encountered contaminants and is found in a variety of foods and beverages, including cereals and wine. Driven by the strict regulations regarding the maximum allowable OTA concentration in foodstuff and the necessity for on-site determination, the development of fast and sensitive methods for the OTA determination in cereal flours and wine samples, based on white light reflectance spectroscopy, is presented. The method relied on appropriately engineered silicon chips, on top of which an OTA-protein conjugate was immobilized. A polyclonal antibody against OTA was then employed to detect the analyte in the framework of a competitive immunoassay; followed by the subsequent addition of a biotinylated secondary antibody and streptavidin for signal enhancement. A small size instrument performed all assay steps automatically and the bioreactions were monitored in real time as the software converted the spectral shifts into effective biomolecular adlayer thickness increase. The assay developed had a detection limit of 0.03 ng/mL and a working range up to 200 ng/mL. The assay lasted 25 min (less than 1h, including calibrators/antibody pre-incubation) and was accomplished following a simple sample preparation protocol. The method was applied to corn and wheat flour samples and white and red wines with recovery values ranging from 87.2 to 111%. The simplicity of the overall assay protocol and convenient instrumentation demonstrates the potential of the immunosensor developed for OTA detection at the point of need.


Assuntos
Técnicas Biossensoriais , Ocratoxinas , Vinho , Grão Comestível/química , Vinho/análise , Farinha , Imunoensaio/métodos , Técnicas Biossensoriais/métodos , Silício/química , Estreptavidina , Triticum , Ocratoxinas/análise , Análise Espectral
13.
Biosensors (Basel) ; 11(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068345

RESUMO

Carbendazim is a systemic benzimidazole-type fungicide with broad-spectrum activity against fungi that undermine food products safety and quality. Despite its effectiveness, carbendazim constitutes a major environmental pollutant, being hazardous to both humans and animals. Therefore, fast and reliable determination of carbendazim levels in water, soil, and food samples is of high importance for both food industry and public health. Herein, an optical biosensor based on white light reflectance spectroscopy (WLRS) for fast and sensitive determination of carbendazim in fruit juices is presented. The transducer is a Si/SiO2 chip functionalized with a benzimidazole conjugate, and determination is based on a competitive immunoassay format. Thus, for the assay, a mixture of an in-house developed rabbit polyclonal anti-carbendazim antibody with the standards or samples is pumped over the chip, followed by biotinylated secondary antibody and streptavidin. The WLRS platform allows for real-time monitoring of biomolecular interactions carried out onto the Si/SiO2 chip by transforming the shift in the reflected interference spectrum caused by the immunoreaction to effective biomolecular adlayer thickness. The sensor is able to detect 20 ng/mL of carbendazim in fruit juices with high accuracy and precision (intra- and inter-assay CVs ≤ 6.9% and ≤9.4%, respectively) in less than 30 min, applying a simple sample treatment that alleviates any "matrix-effect" on the assay results and a 60 min preincubation step for improving assay sensitivity. Excellent analytical characteristics and short analysis time along with its small size render the proposed WLRS immunosensor ideal for future on-the-spot determination of carbendazim in food and environmental samples.


Assuntos
Benzimidazóis/análise , Carbamatos/análise , Sucos de Frutas e Vegetais/análise , Fungicidas Industriais/análise , Imunoensaio , Luz , Análise Espectral
14.
Biosensors (Basel) ; 11(8)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34436070

RESUMO

The development of methods and miniaturized systems for fast and reliable quantitative determinations at the Point-of-Care is a top challenge and priority in diagnostics. In this work, a compact bench-top system, based on White Light Reflectance Spectroscopy, is introduced and evaluated in an application with high clinical interest, namely the determination of C-Reactive protein (CRP) in human blood samples. The system encompassed all the necessary electronic and optical components for the performance of the assay, while the dedicated software provided the sequence and duration of assay steps, the reagents flow rate, the real-time monitoring of sensor response, and data processing to deliver in short time and accurately the CPR concentration in the sample. The CRP assay included two steps, the first comprising the binding of sample CRP onto the chip immobilized capture antibody and the second the reaction of the surface immunosorbed CRP molecules with the detection antibody. The assay duration was 12 min and the dynamic range was from 0.05 to 200 µg/mL, covering both normal values and acute inflammation incidents. There was an excellent agreement between CRP values determined in human plasma samples using the developed device with those received for the same samples by a standard diagnostic laboratory method.


Assuntos
Técnicas Biossensoriais , Proteína C-Reativa/análise , Sistemas Automatizados de Assistência Junto ao Leito , Anticorpos , Desenho de Equipamento , Humanos , Luz , Limite de Detecção , Análise Espectral
15.
Opt Express ; 18(8): 8193-206, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20588665

RESUMO

Integrated Optical Frequency-Resolved Mach-Zehnder Interferometry (IO FR-MZI) is introduced as an alternative, cost-efficient operation principle for integrated optical label-free affinity sensors that can combine high sensitivity with high versatility in terms of potential applications and experimental configurations. A detailed theoretical analysis of the method is presented followed by a semi-analytical approximation and numerical calculations in order to quantify the sensitivity and limits of detection of the FR-MZI over Single Wavelength MZI. The obtained results substantiate that IO FR-MZI- based sensors constitute a generic technological platform of high sensitivity that can be implemented into a plethora of detection schemes. For an optimized optical design well below 1mm in length the limit of detection can be as low as 0.025A in terms of adlayer effective thickness allowing for truly miniaturized integrated optical sensors fabricated with high yield with standard microfabrication techniques.

16.
Biosensors (Basel) ; 10(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113758

RESUMO

Deoxynivalenol (DON) is a mycotoxin produced by certain Fusarium species and found in a high percentage of wheat and maize grains cultured worldwide. Although not so toxic as other mycotoxins, it exhibits both chronic and acute toxicity, and therefore methods for its fast and accurate on-site determination are highly desirable. In the current work, we employ an optical immunosensor based on White Light Reflectance Spectroscopy (WLRS) for the fast and sensitive immunochemical label-free determination of DON in wheat and maize samples. The assay is completed in 12 min and has a quantification limit of 2.5 ng/mL in buffer corresponding to 125 µg/kg in whole grain which is lower than the maximum allowable concentrations set by the regulatory authorities for grains intended for human consumption. Several extraction protocols have been compared, and the highest recovery (>90%) was achieved employing distilled water. In addition, identical calibration curves were received in buffer and wheat/maize extraction matrix providing the ability to analyze the grain samples using calibrators in buffer. Recoveries of DON from spiked wheat and maize grain samples ranged from 92.0(±4.0) to 105(±4.0)%. The analytical performance of the WLRS immunosensor, combined with the short analysis time and instrument portability, supports its potential for on-site determinations.


Assuntos
Grão Comestível/microbiologia , Micotoxinas/análise , Tricotecenos/análise , Análise de Alimentos , Microbiologia de Alimentos , Fusarium , Humanos , Sistema Imunitário , Análise Espectral , Triticum
17.
Talanta ; 214: 120854, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32278411

RESUMO

An optical immunosensor based on White Light Reflectance Spectroscopy is described for the determination of the herbicide glyphosate in drinking water samples. The biosensor allows for the label-free real-time monitoring of biomolecular interactions taking place onto a SiO2/Si chip by transforming the shift in the reflected interference spectrum caused by the immunoreaction to effective biomolecular adlayer thickness. Glyphosate determination is accomplished by functionalizing the chip with a protein conjugate of the herbicide followed by a competitive immunoassay format. Prior to the assay, glyphosate derivatization in the calibrators and/or the samples was performed through reaction with succinic anhydride. Under the optimized assay protocol, a detection limit of 10 pg mL-1 was achieved. Recovery values ranging from 90.0 to 110% were determined in spiked bottled and tap water samples, demonstrating the accuracy of the method. In addition, the sensor could be regenerated and re-used for at least 14 times without statistically significant effect on the assay sensitivity and accuracy. The excellent analytical performance and short analysis time (approx. 25 min), combined with the small sensor size, should be helpful for the fast on-site determination of glyphosate in drinking water samples.

18.
Biosens Bioelectron ; 153: 112035, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31989941

RESUMO

Biosensing through White Light Reflectance Spectroscopy (WLRS) is based on monitoring the shift of interference spectrum due to the binding reactions occurring on top of a thin SiO2 layer deposited on a silicon chip. Multi-analyte determinations were possible through scanning of a single sensor chip on which multiple bioreactive areas have been created. Nonetheless, the implementation of moving parts increased the instrumentation size and complexity and limited the potential for on-site determinations. Thus, in this work, a new approach, which is based on patterning the sensor surface to create areas with different SiO2 thickness, is developed and evaluated for multi-analyte determinations with the WLRS set-up. The areas of different thickness can be interrogated by a single reflection probe placed on a fixed position over the chip and the reflection spectrum recorded is de-convoluted to the spectra corresponding to each area allowing the simultaneous monitoring of the bioreactions taking place at each one of them. The combination of different areas thickness was optimized using chips with two areas for single analyte assays. The optimum chips were then used for the simultaneous determination of two mycotoxins, aflatoxin B1 and fumonisin B1. A competitive immunoassay format was followed employing immobilization of mycotoxin-protein conjugates onto the SiO2 of different thickness. It was found that the dual-analyte assays had identical analytical characteristics with the respective single-analyte ones. The detection limits achieved were 0.05 ng/mL for aflatoxin B1 and 1.0 ng/mL for fumonisin B1, with dynamic ranges extending up to 5.0 and 50 ng/mL, respectively. The sensor was also evaluated for the determination of the two mycotoxins in whole grain samples (wheat and maize). The extraction protocol was optimized and recoveries ranging from 85 to 115% have been determined. Due to lack of moving parts, the novel multi-analyte format is expected to considerably facilitate the built-up of a portable device for determination of analytes at the point-of-need.


Assuntos
Contaminação de Alimentos/análise , Micotoxinas/análise , Dióxido de Silício/química , Silício/química , Aflatoxina B1/análise , Animais , Anticorpos Monoclonais/química , Técnicas Biossensoriais , Desenho de Equipamento , Fumonisinas/análise , Imunoensaio , Luz , Limite de Detecção , Camundongos , Espectrofotometria , Propriedades de Superfície , Triticum/química , Zea mays/química
19.
Lab Chip ; 9(9): 1261-6, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19370246

RESUMO

A monolithic photonic microcantilever device is presented comprising silicon light sources and detectors self-aligned to suspended silicon nitride waveguides all integrated into the same silicon chip. A silicon nitride waveguide optically links a silicon light emitting diode to a detector. Then, the optocoupler releases a localized formation of resist-silicon nitride cantilevers through e-beam lithography, dry etching and precisely controlled wet etching through a special microfluidic set-up. Fine micro-optical sensing functions are performed without the need for any off-chip optics. As the bimaterial microcantilevers are deflected by the stressed polymer film, the disrupted waveguide acts like a photonic switch. Cantilever deflections in the order of 1 A caused by thickness variations in the order of 0.005 A are detectable following changes in the physicochemical factors affecting the polymer film thickness. Such factors include the sorption of volatile compounds and through a proper set-up the response to certain vapor concentrations is monitored in real time.


Assuntos
Sistemas Microeletromecânicos/instrumentação , Microquímica/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Fotometria/instrumentação , Compostos Orgânicos Voláteis/análise , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
J Hazard Mater ; 359: 445-453, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30059886

RESUMO

A label-free optical biosensor for the fast simultaneous determination of three mycotoxins, aflatoxin B1 (AFB1), fumonisin B1 (FB1) and deoxynivalenol (DON), in beer samples is presented. The biosensor is based on an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources onto a single chip. Multi-analyte determination is accomplished by functionalizing the sensing arms of individual MZIs with mycotoxin-protein conjugates. Assay is performed by pumping over the chip mixtures of calibrators or samples with a mixture of specific monoclonal antibodies, followed by reaction with a secondary anti-mouse IgG antibody. Reactions are monitored in real-time by continuously recording the MZI output spectra, which are then subjected to Discrete Fourier Transform to convert spectrum shifts to phase shifts. The detection limits achieved for AFB1, FB1 and DON were 0.8, 5.6 and 24 ng/ml, respectively, while the assay duration was 12 min. Recovery values ranging from 85 to 115% were determined in beer samples spiked with known concentrations of the three mycotoxins. In addition, beers of different types and origin were analysed with the biosensor developed and the results were compared with those provided by established laboratory methods, further supporting the accuracy of the proposed device.


Assuntos
Aflatoxina B1/análise , Cerveja/análise , Contaminação de Alimentos/análise , Fumonisinas/análise , Tricotecenos/análise , Aflatoxina B1/imunologia , Anticorpos Monoclonais/imunologia , Técnicas Biossensoriais , Fumonisinas/imunologia , Imunoglobulina G/imunologia , Tricotecenos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA