Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(3): 786-801.e19, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33125893

RESUMO

Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL's favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Nanotecnologia , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Animais , Comportamento Animal , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proliferação de Células/efeitos dos fármacos , Colesterol/metabolismo , Feminino , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade/efeitos dos fármacos , Imunoterapia , Lipoproteínas HDL/metabolismo , Camundongos Endogâmicos C57BL , Primatas , Distribuição Tecidual/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
2.
Nat Methods ; 17(10): 1025-1032, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32929269

RESUMO

The immune system's ability to recognize peptides on major histocompatibility molecules contributes to the eradication of cancers and pathogens. Tracking these responses in vivo could help evaluate the efficacy of immune interventions and improve mechanistic understanding of immune responses. For this purpose, we employ synTacs, which are dimeric major histocompatibility molecule scaffolds of defined composition. SynTacs, when labeled with positron-emitting isotopes, can noninvasively image antigen-specific CD8+ T cells in vivo. Using radiolabeled synTacs loaded with the appropriate peptides, we imaged human papillomavirus-specific CD8+ T cells by positron emission tomography in mice bearing human papillomavirus-positive tumors, as well as influenza A virus-specific CD8+ T cells in the lungs of influenza A virus-infected mice. It is thus possible to visualize antigen-specific CD8+ T-cell populations in vivo, which may serve prognostic and diagnostic roles.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/virologia , Papillomaviridae/imunologia , Tomografia por Emissão de Pósitrons/métodos , Animais , Antígenos , Clonagem Molecular , Epitopos/genética , Epitopos/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe I/classificação , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoglobulina G/classificação , Imunoglobulina G/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia
3.
J Immunol ; 207(5): 1468-1477, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34408009

RESUMO

Immuno-positron emission tomography (PET), a noninvasive imaging modality, can provide a dynamic approach for longitudinal assessment of cell populations of interest. Transformation of mAbs into single-chain variable fragment (scFv)-based PET imaging agents would allow noninvasive tracking in vivo of a wide range of possible targets. We used sortase-mediated enzymatic labeling in combination with PEGylation to develop an anti-mouse CD4 scFv-based PET imaging agent constructed from an anti-mouse CD4 mAb. This anti-CD4 scFv can monitor the in vivo distribution of CD4+ T cells by immuno-PET. We tracked CD4+ and CD8+ T cells in wild-type mice, in immunodeficient recipients reconstituted with monoclonal populations of OT-II and OT-I T cells, and in a B16 melanoma model. Anti-CD4 and -CD8 immuno-PET showed that the persistence of both CD4+ and CD8+ T cells transferred into immunodeficient mice improved when recipients were immunized with OVA in CFA. In tumor-bearing animals, infiltration of both CD4+ and CD8+ T cells increased as the tumor grew. The approach described in this study should be readily applicable to convert clinically useful Abs into the corresponding scFv PET imaging agents.


Assuntos
Antígenos CD4/imunologia , Linfócitos T CD4-Positivos/imunologia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/terapia , Monitorização Imunológica/métodos , Neoplasias Cutâneas/terapia , Animais , Anticorpos Monoclonais/metabolismo , Diagnóstico por Imagem , Feminino , Memória Imunológica , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tomografia por Emissão de Pósitrons , Anticorpos de Cadeia Única/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(28): 14181-14190, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31068469

RESUMO

Extracellular matrix (ECM) deposition is a hallmark of many diseases, including cancer and fibroses. To exploit the ECM as an imaging and therapeutic target, we developed alpaca-derived libraries of "nanobodies" against disease-associated ECM proteins. We describe here one such nanobody, NJB2, specific for an alternatively spliced domain of fibronectin expressed in disease ECM and neovasculature. We showed by noninvasive in vivo immuno-PET/CT imaging that NJB2 detects primary tumors and metastatic sites with excellent specificity in multiple models of breast cancer, including human and mouse triple-negative breast cancer, and in melanoma. We also imaged mice with pancreatic ductal adenocarcinoma (PDAC) in which NJB2 was able to detect not only PDAC tumors but also early pancreatic lesions called pancreatic intraepithelial neoplasias, which are challenging to detect by any current imaging modalities, with excellent clarity and signal-to-noise ratios that outperformed conventional 2-fluorodeoxyglucose PET/CT imaging. NJB2 also detected pulmonary fibrosis in a bleomycin-induced fibrosis model. We propose NJB2 and similar anti-ECM nanobodies as powerful tools for noninvasive detection of tumors, metastatic lesions, and fibroses. Furthermore, the selective recognition of disease tissues makes NJB2 a promising candidate for nanobody-based therapeutic applications.


Assuntos
Carcinogênese/genética , Carcinoma Ductal Pancreático/diagnóstico por imagem , Matriz Extracelular/efeitos dos fármacos , Neoplasias Pancreáticas/diagnóstico por imagem , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Fibrose/patologia , Humanos , Masculino , Camundongos , Neoplasias Pancreáticas/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/farmacologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Neoplasias Pancreáticas
5.
Proc Natl Acad Sci U S A ; 116(34): 16971-16980, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31375632

RESUMO

Immunotherapy using checkpoint-blocking antibodies against PD-1 has produced impressive results in a wide range of cancers. However, the response remains heterogeneous among patients. We used noninvasive immuno-positron emission tomography (PET), using 89Zr-labeled PEGylated single-domain antibody fragments (nanobodies or VHHs), to explore the dynamics and distribution of intratumoral CD8+ T cells and CD11b+ myeloid cells in response to anti-PD-1 treatment in the MC38 colorectal mouse adenocarcinoma model. Responding and nonresponding tumors showed consistent differences in the distribution of CD8+ and CD11b+ cells. Anti-PD-1 treatment mobilized CD8+ T cells from the tumor periphery to a more central location. Only those tumors fully infiltrated by CD8+ T cells went on to complete resolution. All tumors contained CD11b+ myeloid cells from the outset of treatment, with later recruitment of additional CD11b+ cells. As tumors grew, the distribution of intratumoral CD11b+ cells became more heterogeneous. Shrinkage of tumors in responders correlated with an increase in the CD11b+ population in the center of the tumors. The changes in distribution of CD8+ and CD11b+ cells, as assessed by PET, served as biomarkers to gauge the efficacy of anti-PD-1 treatment. Single-cell RNA sequencing of RNA from intratumoral CD45+ cells showed that CD11b+ cells in responders and nonresponders were markedly different. The responders exhibited a dominant population of macrophages with an M1-like signature, while the CD45+ population in the nonresponders displayed an M2-like transcriptional signature. Thus, by using immuno-PET and single-cell RNA sequencing, we show that anti-PD-1 treatment not only affects interactions of CD8+ T cells with the tumor but also impacts the intratumoral myeloid compartment.


Assuntos
Adenocarcinoma , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos , Neoplasias Colorretais , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais , Tomografia por Emissão de Pósitrons , Receptor de Morte Celular Programada 1/imunologia , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Animais , Antígeno CD11b/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Feminino , Camundongos , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Microambiente Tumoral/imunologia
6.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232839

RESUMO

Protein-based conjugates have been extensively utilized in various biotechnological and therapeutic applications. In order to prepare homogeneous conjugates, site-specific modification methods and efficient purification strategies are both critical factors to be considered. The development of general and facile conjugation and purification strategies is therefore highly desirable. Here, we apply a capture and release strategy to create protein conjugates based on Designed Ankyrin Repeat Proteins (DARPins), which are engineered antigen-binding proteins with prominent affinity and selectivity. In this case, DARPins that target the epithelial cell adhesion molecule (EpCAM), a diagnostic cell surface marker for many types of cancer, were employed. The DARPins were first genetically modified with a C-terminal CVIA sequence to install an enzyme recognition site and then labeled with an aldehyde functional group employing protein farnesyltransferase. Using a capture and release strategy, conjugation of the labeled DARPins to a TAMRA fluorophore was achieved with either purified proteins or directly from crude E. coli lysate and used in subsequent flow cytometry and confocal imaging analysis. DARPin-MMAE conjugates were also prepared yielding a construct manifesting an IC50 of 1.3 nM for cell killing of EpCAM positive MCF-7 cells. The method described here is broadly applicable to enable the streamlined one-step preparation of protein-based conjugates.


Assuntos
Repetição de Anquirina , Proteínas de Repetição de Anquirina Projetadas , Aldeídos/metabolismo , Alquil e Aril Transferases , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas/química
7.
Bioconjug Chem ; 32(11): 2397-2406, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34748323

RESUMO

Site-specific protein labeling is important in biomedical research and biotechnology. While many methods allow site-specific protein modification, a straightforward approach for efficient N-terminal protein labeling is not available. We introduce a novel sortase-mediated swapping approach for a one-step site-specific N-terminal labeling with a near-quantitative yield. We show that this method allows rapid and efficient cleavage and simultaneous labeling of the N or C termini of fusion proteins. The method does not require any prior modification beyond the genetic incorporation of the sortase recognition motif. This new approach provides flexibility for protein engineering and site-specific protein modifications.


Assuntos
Aminoaciltransferases
8.
Proc Natl Acad Sci U S A ; 115(15): 3912-3917, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581255

RESUMO

Ipilimumab, a monoclonal antibody that recognizes cytotoxic T lymphocyte antigen (CTLA)-4, was the first approved "checkpoint"-blocking anticancer therapy. In mouse tumor models, the response to antibodies against CTLA-4 depends entirely on expression of the Fcγ receptor (FcγR), which may facilitate antibody-dependent cellular phagocytosis, but the contribution of simple CTLA-4 blockade remains unknown. To understand the role of CTLA-4 blockade in the complete absence of Fc-dependent functions, we developed H11, a high-affinity alpaca heavy chain-only antibody fragment (VHH) against CTLA-4. The VHH H11 lacks an Fc portion, binds monovalently to CTLA-4, and inhibits interactions between CTLA-4 and its ligand by occluding the ligand-binding motif on CTLA-4 as shown crystallographically. We used H11 to visualize CTLA-4 expression in vivo using whole-animal immuno-PET, finding that surface-accessible CTLA-4 is largely confined to the tumor microenvironment. Despite this, H11-mediated CTLA-4 blockade has minimal effects on antitumor responses. Installation of the murine IgG2a constant region on H11 dramatically enhances its antitumor response. Coadministration of the monovalent H11 VHH blocks the efficacy of a full-sized therapeutic antibody. We were thus able to demonstrate that CTLA-4-binding antibodies require an Fc domain for antitumor effect.


Assuntos
Antígeno CTLA-4/imunologia , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Fragmentos de Imunoglobulinas/administração & dosagem , Neoplasias/terapia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Antígeno CTLA-4/química , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/imunologia , Imunoglobulina G/administração & dosagem , Imunoglobulina G/imunologia , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Domínios Proteicos
9.
Proc Natl Acad Sci U S A ; 112(19): 6146-51, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25902531

RESUMO

At their margins, tumors often contain neutrophils, dendritic cells, and activated macrophages, which express class II MHC and CD11b products. The interplay between stromal cells, tumor cells, and migratory cells such as lymphocytes creates opportunities for noninvasive imaging of immune responses. We developed alpaca-derived antibody fragments specific for mouse class II MHC and CD11b products, expressed on the surface of a variety of myeloid cells. We validated these reagents by flow cytometry and two-photon microscopy to obtain images at cellular resolution. To enable noninvasive imaging of the targeted cell populations, we developed a method to site-specifically label VHHs [the variable domain (VH) of a camelid heavy-chain only antibody] with (18)F or (64)Cu. Radiolabeled VHHs rapidly cleared the circulation (t1/2 ≈ 20 min) and clearly visualized lymphoid organs. We used VHHs to explore the possibility of imaging inflammation in both xenogeneic and syngeneic tumor models, which resulted in detection of tumors with remarkable specificity. We also imaged the infiltration of myeloid cells upon injection of complete Freund's adjuvant. Both anti-class II MHC and anti-CD11b VHHs detected inflammation with excellent specificity. Given the ease of manufacture and labeling of VHHs, we believe that this method could transform the manner in which antitumor responses and/or infectious events may be tracked.


Assuntos
Sistema Imunitário/fisiologia , Neoplasias/imunologia , Tomografia por Emissão de Pósitrons , Aminoaciltransferases/fisiologia , Animais , Anticorpos/imunologia , Antineoplásicos/uso terapêutico , Proteínas de Bactérias/fisiologia , Células da Medula Óssea/metabolismo , Radioisótopos de Cobre/química , Cisteína Endopeptidases/fisiologia , Citometria de Fluxo , Radioisótopos de Flúor/química , Adjuvante de Freund , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/patologia , Transplante de Neoplasias , Neoplasias/terapia
10.
Angew Chem Int Ed Engl ; 55(2): 528-533, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26630549

RESUMO

Antibodies are currently the fastest-growing class of therapeutics. Although naked antibodies have proven valuable as pharmaceutical agents, they have some limitations, such as low tissue penetration and a long circulatory half-life. They have been conjugated to toxic payloads, PEGs, or radioisotopes to increase and optimize their therapeutic efficacy. Although nonspecific conjugation is suitable for most in vitro applications, it has become evident that site specifically modified antibodies may have advantages for in vivo applications. Herein we describe a novel approach in which the antibody fragment is tagged with two handles: one for the introduction of a fluorophore or (18)F isotope, and the second for further modification of the fragment with a PEG moiety or a second antibody fragment to tune its circulatory half-life or its avidity. Such constructs, which recognize Class II MHC products and CD11b, showed high avidity and specificity. They were used to image cancers and could detect small tumors.


Assuntos
Imagem Molecular , Anticorpos de Domínio Único/química , Animais , Células Cultivadas , Dimerização , Meia-Vida , Antígenos de Histocompatibilidade Classe II/imunologia , Melanoma Experimental/imunologia , Camundongos , Anticorpos de Domínio Único/sangue , Anticorpos de Domínio Único/uso terapêutico
11.
Bioconjug Chem ; 26(12): 2542-53, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26561785

RESUMO

Site-specific protein labeling is an important technique in protein chemistry and is used for diverse applications ranging from creating protein conjugates to protein immobilization. Enzymatic reactions, including protein prenylation, have been widely exploited as methods to accomplish site-specific labeling. Enzymatic prenylation is catalyzed by prenyltransferases, including protein farnesyltransferase (PFTase) and geranylgeranyltransferase type I (GGTase-I), both of which recognize C-terminal CaaX motifs with different specificities and transfer prenyl groups from isoprenoid diphosphates to their respective target proteins. A number of isoprenoid analogues containing bioorthogonal functional groups have been used to label proteins of interest via PFTase-catalyzed reaction. In this study, we sought to expand the scope of prenyltransferase-mediated protein labeling by exploring the utility of rat GGTase-I (rGGTase-I). First, the isoprenoid specificity of rGGTase-I was evaluated by screening eight different analogues and it was found that those with bulky moieties and longer backbone length were recognized by rGGTase-I more efficiently. Taking advantage of the different substrate specificities of rat PFTase (rPFTase) and rGGTase-I, we then developed a simultaneous dual labeling method to selectively label two different proteins by using isoprenoid analogue and CaaX substrate pairs that were specific to only one of the prenyltransferases. Using two model proteins, green fluorescent protein with a C-terminal CVLL sequence (GFP-CVLL) and red fluorescent protein with a C-terminal CVIA sequence (RFP-CVIA), we demonstrated that when incubated together with both prenyltransferases and the selected isoprenoid analogues, GFP-CVLL was specifically modified with a ketone-functionalized analogue by rGGTase-I and RFP-CVIA was selectively labeled with an alkyne-containing analogue by rPFTase. By switching the ketone-containing analogue to an azide-containing analogue, it was possible to create protein tail-to-tail dimers in a one-pot procedure through the copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. Overall, with the flexibility of using different isoprenoid analogues, this system greatly extends the utility of protein labeling using prenyltransferases.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Prenilação de Proteína , Terpenos/metabolismo , Animais , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Modelos Moleculares , Ratos , Coloração e Rotulagem , Especificidade por Substrato , Terpenos/química , Proteína Vermelha Fluorescente
13.
ACS Pharmacol Transl Sci ; 7(6): 1746-1757, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38898944

RESUMO

T cells play a crucial role in antitumor immune responses and the clearance of infected cells. They identify their targets through the binding of T-cell receptors (TCRs) to peptide-major histocompatibility complex (pMHC) molecules present in cancer cells, infected cells, and antigen-presenting cells. This interaction is often weak, requiring multimeric pMHC molecules to enhance the avidity for identifying antigen-specific T cells. Current exchangeable pMHC-I tetramerization methods may overlook TCRs recognizing less stable yet immunogenic peptides. In vivo applications targeting antigen-specific T cells demand the genetic synthesis of a pMHC fusion for each unique peptide antigen, which poses a significant challenge. To address these challenges, we developed a sortase and click chemistry-mediated approach for generating stable pMHC molecules. Leveraging sortase technology, we introduced an azide click-handle near the N-terminus of ß2m, proximal to the MHC-peptide-binding groove. Simultaneously, the peptide was engineered with a multi glycine linker and a C-terminal alkyne click-handle. Azide-alkyne click reactions efficiently immobilized the peptide onto the MHC molecule, providing a versatile and efficient method for pMHC generation. The resulting peptide-clicked-MHC specifically binds to its cognate TCR and remains stable for over 3 months at 4 °C in the absence of any additional free peptide. The stability of the pMHC and its affinity to cognate TCRs are influenced by the linker's nature and length. Multi glycine linkers outperform poly(ethylene glycol) (PEG) linkers in this regard. This technology expands the toolkit for identifying and targeting antigen-specific T cells, enhancing our understanding of cancer-specific immune responses, and has the potential to streamline the development of personalized immunotherapies.

14.
J Am Chem Soc ; 135(44): 16388-96, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24134212

RESUMO

Construction of heterofunctional proteins is a rapidly emerging area of biotherapeutics. Combining a protein with other moieties, such as a targeting element, a toxic protein or small molecule, and a fluorophore or polyethylene glycol (PEG) group, can improve the specificity, functionality, potency, and pharmacokinetic profile of a protein. Protein farnesyl transferase (PFTase) is able to site-specifically and quantitatively prenylate proteins containing a C-terminal CaaX-box amino acid sequence with various modified isoprenoids. Here, we describe the design, synthesis, and application of a triorthogonal reagent, 1, that can be used to site-specifically incorporate an alkyne and aldehyde group simultaneously into a protein. To illustrate the capabilities of this approach, a protein was enzymatically modified with compound 1 followed by oxime ligation and click reaction to simultaneously incorporate an azido-tetramethylrhodamine (TAMRA) fluorophore and an aminooxy-PEG moiety. This was performed with both a model protein [green fluorescent protein (GFP)] as well as a therapeutically useful protein [ciliary neurotrophic factor (CNTF)]. Next, a protein was enzymatically modified with compound 1 followed by coupling to an azido-bis-methotrexate dimerizer and aminooxy-TAMRA. Incubation of that construct with a dihydrofolate reductase (DHFR)-DHFR-anti-CD3 fusion protein resulted in the self-assembly of nanoring structures that were endocytosed into T-leukemia cells and visualized therein. These results highlight how complex multifunctional protein assemblies can be prepared using this facile triorthogonal approach.


Assuntos
Fator Neurotrófico Ciliar/química , Proteínas de Fluorescência Verde/química , Fosfatos de Poli-Isoprenil/química , Sesquiterpenos/química , Coloração e Rotulagem , Fator Neurotrófico Ciliar/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Modelos Moleculares , Estrutura Molecular , Fosfatos de Poli-Isoprenil/síntese química , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/síntese química , Sesquiterpenos/metabolismo
15.
Bioconjug Chem ; 24(8): 1277-94, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23837885

RESUMO

Site-specific modification of proteins is a major challenge in modern chemical biology due to the large number of reactive functional groups typically present in polypeptides. Because of its importance in biology and medicine, the development of methods for site-specific modification of proteins is an area of intense research. Selective protein modification procedures have been useful for oriented protein immobilization, for studies of naturally occurring post-translational modifications, for creating antibody­drug conjugates, for the introduction of fluorophores and other small molecules on to proteins, for examining protein structure, folding, dynamics, and protein­protein interactions, and for the preparation of protein­polymer conjugates. One of the most important approaches for protein labeling is to incorporate bioorthogonal functionalities into proteins at specific sites via enzymatic reactions. The incorporated tags then enable reactions that are chemoselective, whose functional groups not only are inert in biological media, but also do not occur natively in proteins or other macromolecules. This review article summarizes the enzymatic strategies, which enable site-specific functionalization of proteins with a variety of different functional groups. The enzymes covered in this review include formylglycine generating enzyme, sialyltransferases, phosphopantetheinyltransferases, O-GlcNAc post-translational modification, sortagging, transglutaminase, farnesyltransferase, biotin ligase, lipoic acid ligase, and N-myristoyltransferase.


Assuntos
Enzimas/metabolismo , Proteínas/química , Coloração e Rotulagem/métodos , Sequência de Aminoácidos , Animais , Enzimas/química , Humanos , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo
16.
Bioconjug Chem ; 24(3): 333-42, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23425124

RESUMO

Imine-based reactions are useful for a wide range of bioconjugation applications. Although aniline is known to catalyze the oxime ligation reaction under physiological conditions, it suffers from slow reaction kinetics, specifically when a ketone is being used or when hydrazone-oxime exchange is performed. Here, we report on the discovery of a new catalyst that is up to 15 times more efficient than aniline. That catalyst, m-phenylenediamine (mPDA), was initially used to analyze the kinetics of oxime ligation on aldehyde- and ketone-containing small molecules. While mPDA is only modestly more effective than aniline when used in equal concentrations (~2-fold), its much greater aqueous solubility relative to aniline allows it to be used at higher concentrations, resulting in significantly more efficient catalysis. In the context of protein labeling, it was first used to site-specifically label an aldehyde-functionalized protein through oxime ligation, and its kinetics were compared to reaction with aniline. Next, a protein was labeled with an aldehyde-containing substrate in crude cell lysate, captured with hydrazide-functionalized beads and then the kinetics of immobilized protein release via hydrazone-oxime exchange were analyzed. Our results show that mPDA can release and label 15 times more protein than aniline can in 3 h. Then, using the new catalyst, ciliary neurotrophic factor, a protein with therapeutic potential, was successfully labeled with a fluorophore in only 5 min. Finally, a protein containing the unnatural amino acid, p-acetyl phenylalanine, a ketone-containing residue, was prepared and PEGylated efficiently via oxime ligation using mPDA. This new catalyst should have a significant impact on the field of bioconjugation, where oxime ligation and hydrazone-oxime exchange are commonly employed.


Assuntos
Hidrazonas/metabolismo , Oximas/metabolismo , Fenilenodiaminas/metabolismo , Catálise , Hidrazonas/química , Oximas/química , Fenilenodiaminas/química
17.
Adv Healthc Mater ; 12(2): e2201585, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36213946

RESUMO

One of the major shortcomings of nano carriers-assisted cancer therapeutic strategies continues to be the inadequate tumor penetration and retention of systemically administered nanoformulations and its off-target toxicity. Stromal parameters-related heterogeneity in enhanced permeability and retention effect and physicochemical properties of the nanoformulations immensely contributes to their poor tumor extravasation. Herein, a novel tumor targeting strategy, where an intratumorally implanted micromagnet can significantly enhance accumulation of magneto-plasmonic nanoparticles (NPs) at the micromagnet-implanted tumor in bilateral colorectal tumor models while limiting their off-target accumulation, is demonstrated. To this end, novel multimodal gold/iron oxide NPs comprised of an array of multifunctional moieties with high therapeutic, sensing, and imaging potential are developed. It is also discovered that cancer cell targeted NPs in combination with static magnetic field can selectively induce cancer cell death. A multimodal caspase-3 nanosensor is also developed for real-time visualization of selective induction of apoptosis in cancer cells. In addition, the photothermal killing capability of these NPs in vitro is evaluated, and their potential for enhanced photothermal ablation in tissue samples is demonstrated. Building on current uses of implantable devices for therapeutic purposes, this study envisions the proposed micromagnet-assisted NPs delivery approach may be used to accelerate the clinical translation of various nanoformulations.


Assuntos
Nanopartículas Metálicas , Neoplasias , Linhagem Celular Tumoral , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Apoptose , Terapia Fototérmica/métodos , Nanopartículas Metálicas/química , Ouro/química
18.
JACC Basic Transl Sci ; 8(7): 801-816, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37547068

RESUMO

In the past 2 decades, research on atherosclerotic cardiovascular disease has uncovered inflammation to be a key driver of the pathophysiological process. A pressing need therefore exists to quantitatively and longitudinally probe inflammation, in preclinical models and in cardiovascular disease patients, ideally using non-invasive methods and at multiple levels. Here, we developed and employed in vivo multiparametric imaging approaches to investigate the immune response following myocardial infarction. The myocardial infarction models encompassed either transient or permanent left anterior descending coronary artery occlusion in C57BL/6 and Apoe-/-mice. We performed nanotracer-based fluorine magnetic resonance imaging and positron emission tomography (PET) imaging using a CD11b-specific nanobody and a C-C motif chemokine receptor 2-binding probe. We found that immune cell influx in the infarct was more pronounced in the permanent occlusion model. Further, using 18F-fluorothymidine and 18F-fluorodeoxyglucose PET, we detected increased hematopoietic activity after myocardial infarction, with no difference between the models. Finally, we observed persistent systemic inflammation and exacerbated atherosclerosis in Apoe-/- mice, regardless of which infarction model was used. Taken together, we showed the strengths and capabilities of multiparametric imaging in detecting inflammatory activity in cardiovascular disease, which augments the development of clinical readouts.

19.
J Am Chem Soc ; 134(20): 8455-67, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22435540

RESUMO

Site-specific chemical modification of proteins is important for many applications in biology and biotechnology. Recently, our laboratory and others have exploited the high specificity of the enzyme protein farnesyltransferase (PFTase) to site-specifically modify proteins through the use of alternative substrates that incorporate bioorthogonal functionality including azides and alkynes. In this study, we evaluate two aldehyde-containing molecules as substrates for PFTase and as reactants in both oxime and hydrazone formation. Using green fluorescent protein (GFP) as a model system, we demonstrate that the purified protein can be enzymatically modified with either analogue to yield aldehyde-functionalized proteins. Oxime or hydrazone formation was then employed to immobilize, fluorescently label, or PEGylate the resulting aldehyde-containing proteins. Immobilization via hydrazone formation was also shown to be reversible via transoximization with a fluorescent alkoxyamine. After characterizing this labeling strategy using pure protein, the specificity of the enzymatic process was used to selectively label GFP present in crude E. coli extract followed by capture of the aldehyde-modified protein using hydrazide-agarose. Subsequent incubation of the immobilized protein using a fluorescently labeled or PEGylated alkoxyamine resulted in the release of pure GFP containing the desired site-specific covalent modifications. This procedure was also employed to produce PEGylated glucose-dependent insulinotropic polypeptide (GIP), a protein with potential therapeutic activity for diabetes. Given the specificity of the PFTase-catalyzed reaction coupled with the ability to introduce a CAAX-box recognition sequence onto almost any protein, this method shows great potential as a general approach for selective immobilization and labeling of recombinant proteins present in crude cellular extract without prior purification. Beyond generating site-specifically modified proteins, this approach for polypeptide modification could be particularly useful for large-scale production of protein conjugates for therapeutic or industrial applications.


Assuntos
Aldeídos/metabolismo , Alquil e Aril Transferases/metabolismo , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Coloração e Rotulagem/métodos , Aldeídos/química , Animais , Escherichia coli/química , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Polipeptídeo Inibidor Gástrico/química , Polipeptídeo Inibidor Gástrico/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hidrazonas/química , Hidrazonas/metabolismo , Modelos Moleculares , Oximas/química , Oximas/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Prenilação de Proteína , Especificidade por Substrato
20.
Curr Opin Chem Biol ; 67: 102117, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219177

RESUMO

Cancer immunotherapies typically aim to stimulate the accumulation and activity of cytotoxic T-cells or pro-inflammatory antigen-presenting cells, reduce immunosuppressive myeloid cells or regulatory T-cells, or elicit some combination of effects thereof. Notwithstanding the encouraging results, immunotherapies such as PD-1/PD-L1-targeted immune checkpoint blockade act heterogeneously across individual patients. It remains challenging to predict and monitor individual responses, especially across multiple sites of metastasis or sites of potential toxicity. To address this need, in vivo imaging of both adaptive and innate immune cell populations has emerged as a tool to quantify spatial leukocyte accumulation in tumors non-invasively. Here we review recent progress in the translational development of probes for in vivo leukocyte imaging, focusing on complementary perspectives provided by imaging of T-cells, phagocytic macrophages, and their responses to therapy.


Assuntos
Neoplasias , Microambiente Tumoral , Células Apresentadoras de Antígenos , Humanos , Imunoterapia/métodos , Neoplasias/diagnóstico por imagem , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA