RESUMO
The functional significance of fibrin deposits typically seen in inflammatory lesions, carcinomas and in healing wounds is not fully understood. In the present study, we demonstrate that fibrinogen/fibrin specifically bound to native Col I (collagen type I) and used the Col I fibre network as a base to provide a functional interface matrix that connects cells to the Col I fibres through αVß3 integrins. This allowed murine myoblast C2C12 cells to contract the collagenous composite gel via αVß3 integrin. We show that fibrinogen specifically bound to immobilized native Col I at the site known to bind matrix metalloproteinase-1, discoidin domain receptor-2 and fibronectin, and that binding had no effect on Col I fibrillation. A specific competitive inhibitor blocking the Col-I-binding site for fibrinogen abolished the organization of fibrin into discernable fibrils, as well as the C2C12-mediated contraction of Col I gels. Our data show that fibrin can function as a linkage protein between Col I fibres and cells, and suggest that fibrin at inflammatory sites indirectly connects αVß3 integrins to Col I fibres and thereby promotes cell-mediated contraction of collagenous tissue structures.
Assuntos
Colágeno Tipo I/metabolismo , Fibrina/metabolismo , Integrina alfaVbeta3/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Géis , Camundongos , Trombina/farmacologiaRESUMO
In orthodox seeds, the transcriptional activator ABI3 regulates two major stages in embryo maturation: a mid-maturation (MAT) stage leading to accumulation of storage compounds, and a late maturation (LEA) stage leading to quiescence and desiccation tolerance. Our aim was to elucidate mechanisms for transcriptional shutdown of MAT genes during late maturation, to better understand phase transition between MAT and LEA stages. Using transgenic and transient approaches in Nicotiana, we examined activities of two ABI3-dependent reporter genes driven by multimeric RY and abscisic acid response elements (ABREs) from a Brassica napus napin gene, termed RY and ABRE, where the RY reporter requires ABI3 DNA binding. Expression of RY peaks during mid-maturation and drops during late maturation, mimicking the MAT gene program, and in Arabidopsis thaliana RY elements are over-represented in MAT, but not in LEA, genes. The ABI3 transactivation of RY is inhibited by staurosporine, by a PP2C phosphatase, and by a repressor of maturation genes, VAL1/HSI2. The RY element mediates repression of MAT genes, and we propose that transcriptional shutdown of the MAT program during late maturation involves inhibition of ABI3 DNA binding by dephosphorylation. Later, during seedling growth, VAL1/HSI2 family repressors silence MAT genes by binding RY elements.
Assuntos
Genes de Plantas , Plântula/crescimento & desenvolvimento , Plântula/genética , Sementes/embriologia , Sementes/genética , Arabidopsis/genética , Sequência de Bases , Brassica napus/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Reporter , Modelos Biológicos , Fosfoproteínas Fosfatases/metabolismo , Plantas Geneticamente Modificadas , Proteína Fosfatase 2C , Estaurosporina/farmacologia , Nicotiana/embriologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Ativação Transcricional/efeitos dos fármacosRESUMO
Human filamin A is a 280 kDa protein involved in actin-filament cross-linking. It is structurally divided into an actin-binding headpiece (ABD) and a rod domain containing 24 immunoglobulin-like (Ig) repeats. A fragment of human filamin A (Ig repeats 14-16) was cloned and expressed in Escherichia coli and the purified protein was crystallized in 1.6 M ammonium sulfate, 2% PEG 1000 and 100 mM HEPES pH 7.5. The crystals diffracted to 1.95 A and belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 50.63, b = 52.10, c = 98.46 A, alpha = beta = gamma = 90 degrees.
Assuntos
Proteínas Contráteis/química , Proteínas dos Microfilamentos/química , Sequência de Bases , Clonagem Molecular , Proteínas Contráteis/genética , Cristalização , Cristalografia por Raios X , Primers do DNA , DNA Complementar , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Filaminas , Humanos , Proteínas dos Microfilamentos/genética , Conformação ProteicaRESUMO
Cell-mediated contraction of collagenous matrices is modulated by various growth factors and cytokines, such as platelet-derived growth factor-BB (PDGF-BB). Here we used a genetic cell model to delineate defined signaling pathways that enhance collagen gel contraction downstream of ligand-stimulated platelet-derived growth factor receptor-ß (PDGF-Rß). Our data show that PDGF BB-enhanced activations of phosphatidylinositol 3'-kinase (PI3K) and phospholipase Cγ (PLCγ) were necessary for PDGF-enhanced collagen gel contraction. Importantly, other defined signaling pathways down-stream of PDGF-Rß were, however, dispensable. The decisive roles for PI3K and PLCγ were corroborated by experiments using selective inhibitors. Furthermore, we show that de-phosphorylation and thereby activation of cofilin that is important for the turnover of actin filaments, is depended on PI3K and PLCγ down-stream of PDGF-Rß. Moreover, inhibition of protein kinase C (PKC) by GÖ6976 and bisindolylmaleimide-II abolished cofilin de-phosphorylation, as well as PDGF-enhanced contraction. In contrast, activation of the PKC protein family by 4ß-phorbol 12-myristate 13-acetate (PMA) did not accelerate collagen gel contraction although it induced long-term cofilin de-phosphorylation, showing the need of a dynamic control of cofilin de-phosphorylation for PDGF-enhanced collagen gel contraction. Taken together, our data point to the involvement of a PI3K/PLCγ-PKC-cofilin pathway in both PDGF-enhanced cofilin de-phosphorylation and PDGF-enhanced collagen gel contraction.
Assuntos
Fatores de Despolimerização de Actina/metabolismo , Becaplermina/metabolismo , Colágeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C gama/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais , Fatores de Despolimerização de Actina/genética , Fibroblastos , Géis , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , FosforilaçãoRESUMO
The lipoprotein receptor LRP2/megalin is expressed by absorptive epithelia and involved in receptor-mediated endocytosis of a wide range of ligands. Megalin is expressed in the neuroepithelium during central nervous system (CNS) development. Mice with homozygous deletions of the megalin gene show severe forebrain abnormalities. The possible role of megalin in the developing spinal cord, however, is unknown. Here we examined the spatial and temporal expression pattern of megalin in the embryonic mouse spinal cord using an antibody that specifically recognizes the cytoplasmic part of the megalin molecule. In line with published data, we show expression of megalin in ependymal cells of the central canal from embryonic day (E)11 until birth. In addition, from E11 until E15 a population of cells was found in the dorsal part of the developing spinal cord strongly immunoreactive against megalin. Double labeling showed that most of these cells express vimentin, a marker for immature astrocytes and radial glia, but not brain lipid binding protein (BLBP), a marker for radial glial cells, or glial fibrillary acidic protein (GFAP), a marker for mature astrocytes. These findings indicate that the majority of the megalin-positive cells are astroglial precursors. Megalin immunoreactivity was mainly localized in the nuclei of these cells, suggesting that the cytoplasmic part of the megalin molecule can be cleaved following ligand binding and translocated to the nucleus to act as a transcription factor or regulate other transcription factors. These findings suggest that megalin has a crucial role in the development of astrocytes of the spinal cord.
Assuntos
Embrião de Mamíferos , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Neurônios/metabolismo , Medula Espinal , Células-Tronco/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Feminino , Idade Gestacional , Humanos , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Camundongos , Neurônios/citologia , Gravidez , Medula Espinal/citologia , Medula Espinal/embriologia , Medula Espinal/metabolismo , Células-Tronco/citologiaRESUMO
Genomic clones and full-length cDNA for the myrosinase gene TGG3 from Arabidopsis thaliana ecotype Columbia were sequenced. The TGG3 gene was similar with the earlier described myrosinase genes and shared the conserved intron/exon splice sites but had an insertion of one nucleotide in exon 5, a deletion of two nucleotides in exon 6 and a deletion of approximately 210 nucleotides in exon 12. These mutations shifted the open reading frame in exon 5 and resulted in a truncated protein. Analysis of the TGG3 DNA sequence from five other Arabidopsis ecotypes showed polymorphisms, but in no case did a functional TGG3 gene appear to be present. Although TGG3 apparently is a pseudogene, it was expressed specifically in stamen and petal according to RT-PCR analysis, while TGG1 and TGG2 transcripts were present in most of the tested tissues. Western blot analysis showed only one myrosinase band of 68 kDa corresponding to TGG1 and TGG2 in flower samples, while no band corresponding to TGG3 was encountered. Apparently only two functional myrosinases are present in this gene family in Arabidopsis.
RESUMO
Extraction of Sinapis alba seeds under native conditions solubilized 3 myrosinase isoforms, pool I, II and III, which could be separated by ion exchange chromatography. Sequencing of numerous peptides of the I and III isoforms showed that they belonged to the Myrosinase A (MA) family of myrosinases and that they were encoded by different genes. Western blot analysis of S. alba seed proteins, extracted with a sodium dodecyl sulphate-containing buffer, using an anti-myrosinase monoclonal antibody, showed the presence of two additional myrosinase isoforms with approximate molecular sizes of 62 and 59 kDa. These myrosinases, which only could be solubilized from seeds by inclusion of denaturing agents in the extraction buffer, were by sequence analysis identified as MB myrosinases. These isoenzymes or very similar forms were also present in seedling cotyledons. However, from this tissue, they could be extracted with non-denaturing buffers. In addition, cotyledons contained a 65-kDa MB myrosinase not found in seeds. In contrast, seedling cotyledons contained only minute amounts of pool I and no pool III MA myrosinases, emphasizing the tissue-specific expression of the corresponding gene families. Sequence analysis of myrosinase cDNAs generated cDNA by reversed transcription-polymerase chain reaction using degenerate primers with mRNA isolated from seeds, cotyledons and leaves confirmed the result that the MA isoforms were expressed only in seed tissue, while MB myrosinases were found in all tissues investigated. Furthermore, seed and leaf contained unique MB myrosinase transcripts, suggesting organ-specific expression of individual MB genes.
RESUMO
Myrosinases (EC 3.2.1.147) are beta-thioglucoside glucosidases present in Brassicaceae plants. These enzymes serve to protect plants against pathogens and insect pests by initiating breakdown of the secondary metabolites glucosinolates into toxic products. Several forms of myrosinases are present in plants but the properties and role of different isoenzymes are not well understood. The dicot plant model organism Arabidopsis thaliana seems to contain six myrosinase genes (TGG1-TGG6). In order to compare the different myrosinases, cDNAs corresponding to TGG1 from leaves and TGG4 and TGG5 from roots were cloned and overexpressed in Pichia pastoris. The His-tagged recombinant proteins were purified using affinity chromatography and the preparations were homogenous according to SDS-PAGE analysis. Myrosinase activity was confirmed for all forms and compared with respect to catalytic activity towards the allyl-glucosinolate sinigrin. There was a 22-fold difference in basal activity among the myrosinases. The enzymes were active in a broad pH range, are rather thermostable and active in a wide range of salt concentrations but sensitive to high salt concentrations. The myrosinases showed different activation-inhibition responses towards ascorbic acid with maximal activity around 0.7-1 mM. No activity was registered towards desulphosinigrin and this compound did not inhibit myrosinase activity towards sinigrin. All myrosinases also displayed O-beta-glucosidase activity, although with lower efficiency compared to the myrosinase activity. The differences in catalytic properties among myrosinase isozymes for function in planta are discussed.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Genes de Plantas , Glicosídeo Hidrolases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácido Ascórbico/metabolismo , Catálise , DNA Complementar , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Isoenzimas , Pichia/genética , Pichia/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sais , Temperatura , beta-Glucosidase/metabolismoRESUMO
Lipoprotein receptor-related protein-2 (LRP2)/megalin is a member of the low density lipoprotein receptor (LDLR) family, and is essential in absorptive epithelia for endocytosis of lipoproteins, low molecular weight proteins, cholesterol and vitamins, as well as in cellular signaling. Previous studies have shown megalin expression in ependymal cells and choroid plexus. We have investigated megalin expression in the spinal cord of postnatal mice with immunohistochemistry and immunoblot. Antibodies recognizing either the cytoplasmic tail (MM6) or the extracellular domain (E11) of megalin labeled oligodendrocytes in the spinal cord white matter, in parallel with myelination. MM6 antibodies, predominantly labeled the nuclei, whereas E11 antibodies labeled the cytoplasm of these cells. MM6 antibodies labeled also nuclei of oligodendrocytes cultured from embryonic mouse spinal cord. Immunoblots of spinal cord showed intact megalin, as well as its carboxyterminal fragment, the part remaining after shedding of the extracellular domain of megalin. Megalin-immunoreactive oligodendrocytes also expressed presenilin 1, an enzyme responsible for gamma-secretase mediated endodomain cleavage. These findings show that spinal cord oligodendrocytes are phenotypically different from those in the brain, and indicate that megalin translocates signals from the cell membrane to the nucleus of oligodendrocytes during the formation and maintenance of myelin of long spinal cord pathways.
Assuntos
Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/biossíntese , Oligodendroglia/metabolismo , Medula Espinal/embriologia , Medula Espinal/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Embrião de Mamíferos , Immunoblotting , Imuno-Histoquímica , CamundongosRESUMO
This study examined the mechanism of Ca2+ entry and the role of protein kinase C (PKC) in Ca2+ signaling induced by activation of the calcium sensing receptor (CaR) in HEK293 cells stably expressing the CaR. We demonstrate that influx of Ca2+ following CaR activation exhibits store-operated characteristics in being associated with Ca2+ store depletion and inhibited by 2-aminoethoxydiphenyl borate. Inhibition of PKC with GF109203X, Go6983, or Go6976 and down-regulation of PKC activity enhanced the release of Ca2+ from internal stores in response to the polyvalent cationic CaR agonist neomycin, whereas activation of PKC with acute 12-O-tetradecanoylphorbol-13-acetate treatment decreased the release. In contrast, overexpression of wild type PKC-alpha or -epsilon augmented the neomycin-induced release of Ca2+ from internal stores, whereas dominant negative PKC-epsilon strongly decreased the release, but dominant negative PKC-alpha had little effect. Prolonged treatment of cells with 12-O-tetradecanoylphorbol-13-acetate effectively down-regulated immunoreactive PKC-alpha but had little effect on the expression of PKC-epsilon. Together these results indicate that diacylglycerol-responsive PKC isoforms differentially influence CaR agonist-induced release of Ca2+ from internal stores. The fundamentally different results obtained when overexpressing or functionally down-regulating specific PKC isoforms as compared with pharmacological manipulation of PKC activity indicate the need for caution when interpreting data obtained with the latter approach.
Assuntos
Cálcio/metabolismo , Proteína Quinase C/fisiologia , Receptores de Detecção de Cálcio/biossíntese , Carbazóis/farmacologia , Cátions , Linhagem Celular , Meios de Cultura Livres de Soro/farmacologia , Regulação para Baixo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Humanos , Immunoblotting , Indóis/farmacologia , Maleimidas/farmacologia , Neomicina/farmacologia , Isoformas de Proteínas , Proteína Quinase C/química , Proteína Quinase C/metabolismo , Proteína Quinase C-épsilon , Receptores de Detecção de Cálcio/metabolismo , Transdução de Sinais , Frações Subcelulares/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Fatores de TempoRESUMO
Brassica napus complementary deoxyribonucleic acid (cDNA) clones encoding a DNA-binding protein, BnPEND, were isolated by Southwestern screening. A distinctive feature of the protein was a bZIP-like sequence in the amino-terminal portion, which, after expression in Escherichia coli, bound DNA. BnPEND transcripts were present in B. napus roots and flower buds, and to a lesser extent in stems, flowers and young leaves. Treatment in the dark for 72 h markedly increased the amount of BnPEND transcript in leaves of all ages. Sequence comparison showed that BnPEND was similar to a presumed transcription factor from B. napus, GSBF1, a protein deduced from an Arabidopsis thaliana cDNA (BX825084) and the PEND protein from Pisum sativum, believed to anchor the plastid DNA to the envelope early during plastid development. Homology to expressed sequence tag (EST) sequences from additional species suggested that BnPEND homologues are widespread among the angiosperms. Transient expression of BnPEND fused with green fluorescent protein (GFP) in Nicotiana benthamiana epidermal cells showed that BnPEND is a plastid protein, and that the 15 amino acids at the amino-terminal contain information about plastid targeting. Expression of BnPEND in Nicotiana tabacum from the Cauliflower Mosaic Virus 35S promoter gave stable transformants with different extents of white to light-green areas in the leaves, and even albino plants. In the white areas, but not in adjacent green tissue, the development of palisade cells and chloroplasts was disrupted. Our data demonstrate that the BnPEND protein, when over-expressed at an inappropriate stage, functionally blocks the development of plastids and leads to altered leaf anatomy, possibly by preventing the release of plastid DNA from the envelope.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Brassica napus , Nicotiana/citologia , Nicotiana/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/fisiologia , Sequência de Aminoácidos , Diferenciação Celular , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Nicotiana/genética , Nicotiana/crescimento & desenvolvimentoRESUMO
Preproparathyroid hormone (prepro-PTH) is one of the proteins abundantly synthesized by parathyroid chief cells; yet under normal growth conditions, little or no prepro-PTH can be detected in these cells. Although this may be attributed to effective cotranslational translocation and proteolytic processing, proteasome-mediated degradation of PTH precursors may be important in the regulation of the levels of these precursors and hence PTH secretion. The effects of N-acetyl-Leu-Leu-norleucinal, N-acetyl-Leu-Leu-methional, carbobenzoxy-Leu-Leu-leucinal (MG132), benzyloxycarbonyl-Ile-Glu(t-butyl)-Ala-leucinal (proteasome inhibitor I), and lactacystin on the biosynthesis and secretion of PTH were examined in dispersed bovine parathyroid cells. We demonstrate that treatment of these cells with proteasome inhibitors caused the accumulation of prepro-PTH and pro-PTH. Compared with mock-treated cells, the processing of pro-PTH to PTH was delayed, and the secretion of intact PTH decreased in proteasome inhibitor-treated cells. Relieving the inhibition of the proteasome by chasing MG132-treated cells in medium without the inhibitor led to the rapid disappearance of the accumulated prepro-PTH, and the rate of PTH secretion was restored to levels comparable to those in mock-treated cells. Furthermore, overexpression of the Hsp70 family of molecular chaperones was observed in proteasome inhibitor-treated cells, and we show that PTH/PTH precursors interact with these molecular chaperones. These data suggest the involvement of parathyroid cell proteasomes in the quality control of PTH biosynthesis.
Assuntos
Acetilcisteína/análogos & derivados , Inibidores Enzimáticos/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , Glândulas Paratireoides/efeitos dos fármacos , Hormônio Paratireóideo/biossíntese , Precursores de Proteínas/biossíntese , Acetilcisteína/farmacologia , Animais , Brefeldina A/farmacologia , Calpaína/antagonistas & inibidores , Bovinos , Células Cultivadas , Cloroquina/farmacologia , Cisteína Endopeptidases , Eletroforese em Gel de Poliacrilamida , Proteínas de Choque Térmico HSP70/biossíntese , Glândulas Paratireoides/metabolismo , Hormônio Paratireóideo/metabolismo , Complexo de Endopeptidases do Proteassoma , Precursores de Proteínas/metabolismoRESUMO
The sensing of extracellular Ca(2+) concentration ([Ca(2+)](o)) and modulation of cellular processes associated with acute or sustained changes in [Ca(2+)](o) are cell-type specific and mediated by the calcium sensing receptor (CaR). [Ca(2+)](o) signalling requires protein kinase C (PKC), but the identity and role of PKC isoforms in CaR-mediated responses remain unclear. Here we show that high [Ca(2+)](o) activated PKC-alpha and PKC- in parathyroid cells and in human embryonic kidney (HEK293) cells overexpressing the CaR (HEK-CaR) and that this response correlated with the CaR-dependent activation of mitogen-activated protein kinases ERK1/2. Activation of ERK1/2 by acute high [Ca(2+)](o) required influx of Ca(2+)through Ni(2+)-sensitive Ca(2+)channels and phosphatidylinositol-dependent phospholipase C-beta activity. Inhibition of PKC by co-expression of dominant-negative (DN) mutants of PKC-alpha or - with the CaR attenuated sustained ERK1/2 activation. Overexpression of a PKC phosphorylation site (T888A) mutant CaR in HEK293 cells showed that this site was important for ERK1/2 activation at high [Ca(2+)](o). Activation of ERK1/2 by high [Ca(2+)](o) was not necessary for the [Ca(2+)](o)-regulated secretion of parathyroid hormone (PTH) in dispersed bovine parathyroid cells. These data suggest that the CaR-mediated [Ca(2+)](o) signal leading to regulated PTH secretion that requires diacylglycerol-responsive PKC isoforms is not mediated via the ERK pathway.
Assuntos
Cálcio/metabolismo , Proteína Quinase C/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Transdução de Sinais , Animais , Cálcio/farmacologia , Canais de Cálcio/metabolismo , Bovinos , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Ativação Enzimática , Humanos , Rim/citologia , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Glândulas Paratireoides/citologia , Glândulas Paratireoides/metabolismo , Hormônio Paratireóideo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Quinase C/genética , Proteína Quinase C-alfa , Proteína Quinase C-épsilon , Receptores de Detecção de Cálcio/genéticaRESUMO
The enzyme myrosinase (EC 3.2.3.1) degrades the secondary compounds glucosinolates upon wounding and serves as a defense to generalist pests in Capparales. Certain myrosinases are present in complexes together with other proteins such as myrosinase-binding proteins (MBP) in extracts of oilseed rape (Brassica napus) seeds. Immunhistochemical analysis of wild-type seeds showed that MBPs were present in most cells but not in the myrosin cells, indicating that the complex formation observed in extracts is initiated upon tissue disruption. To study the role of MBP in complex formation and defense, oilseed rape antisense plants lacking the seed MBPs were produced. Western blotting and immunohistochemical staining confirmed depletion of MBP in the transgenic seeds. The exclusive expression of myrosinase in idioblasts (myrosin cells) of the seed was not affected by the down-regulation of MBP. Using size-exclusion chromatography, we have shown that myrosinases with subunit molecular masses of 62 to 70 kD were present as free dimers from the antisense seed extract, whereas in the wild type, they formed complexes. In accordance with this, MBPs are necessary for myrosinase complex formation of the 62- to 70-kD myrosinases. The product formed from sinalbin hydrolysis by myrosinase was the same whether MBP was present or not. The performance of a common beetle generalist (Tenebrio molitor) fed with seeds, herbivory by flea beetles (Phyllotreta undulata) on cotyledons, or growth rate of the Brassica fungal pathogens Alternaria brassicae or Lepthosphaeria maculans in the presence of seed extracts were not affected by the down-regulation of MBP, leaving the physiological function of this protein family open.
Assuntos
Brassica napus/enzimologia , Glicosídeo Hidrolases/metabolismo , Sementes/enzimologia , Animais , Brassica napus/genética , Proteínas de Transporte/metabolismo , Cromatografia em Gel , Besouros/crescimento & desenvolvimento , Dieta , Fungos/crescimento & desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Imuno-Histoquímica , Isoenzimas/metabolismo , Larva/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas , Sementes/química , Deleção de SequênciaRESUMO
Megalin is an integral membrane receptor belonging to the low-density lipoprotein receptor family. In addition to its role as an endocytotic receptor, megalin has also been proposed to have signalling functions. Using interaction cloning in yeast, we identified the membrane-associated guanylate kinase family member postsynaptic density-95 (PSD-95) as an interaction partner for megalin. PSD-95 and a truncated version of megalin were co-immunoprecipitated from HEK-293 cell lysates overexpressing the two proteins, which confirmed the interaction. The two proteins were found to be co-localized in these cells by confocal microscopy. Immunocytochemical studies showed that cells in the parathyroid, proximal tubuli of the kidney and placenta express both megalin and PSD-95. We found that the interaction between the two proteins is mediated by the binding of the C-terminus of megalin, which has a type I PSD-95/ Drosophila discs-large/zona occludens 1 (PDZ)-binding motif, to the PDZ2 domain of PSD-95. The PSD-95-like membrane-associated guanylate kinase ('MAGUK') family contains three additional members: PSD-93, synapse-associated protein 97 (SAP97) and SAP102. We detected these proteins, apart from SAP102, in parathyroid chief cells, a cell type having a marked expression of megalin. The PDZ2 domains of PSD-93 and SAP102 were also shown to interact with megalin, whereas no interaction was detected for SAP97. The SAP97 PDZ2 domain differed at four positions from the other members of the PSD-95 subfamily. One of these residues was Thr(389), located in the alphaB-helix and part of the hydrophobic pocket of the PDZ2 domain. Surface plasmon resonance experiments revealed that mutation of SAP97 Thr(389) to alanine, as with the other PSD-95-like membrane-associated guanylate kinases, induced binding to megalin.