Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(5): 1232-1242.e11, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31080064

RESUMO

The activation of G proteins by G protein-coupled receptors (GPCRs) underlies the majority of transmembrane signaling by hormones and neurotransmitters. Recent structures of GPCR-G protein complexes obtained by crystallography and cryoelectron microscopy (cryo-EM) reveal similar interactions between GPCRs and the alpha subunit of different G protein isoforms. While some G protein subtype-specific differences are observed, there is no clear structural explanation for G protein subtype-selectivity. All of these complexes are stabilized in the nucleotide-free state, a condition that does not exist in living cells. In an effort to better understand the structural basis of coupling specificity, we used time-resolved structural mass spectrometry techniques to investigate GPCR-G protein complex formation and G-protein activation. Our results suggest that coupling specificity is determined by one or more transient intermediate states that serve as selectivity filters and precede the formation of the stable nucleotide-free GPCR-G protein complexes observed in crystal and cryo-EM structures.


Assuntos
Proteínas de Ligação ao GTP/química , Complexos Multienzimáticos/química , Receptores Acoplados a Proteínas G/química , Animais , Bovinos , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Complexos Multienzimáticos/ultraestrutura , Estrutura Quaternária de Proteína , Ratos
2.
Nature ; 535(7610): 182-6, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27362234

RESUMO

G-protein-coupled receptors (GPCRs) remain the primary conduit by which cells detect environmental stimuli and communicate with each other. Upon activation by extracellular agonists, these seven-transmembrane-domain-containing receptors interact with heterotrimeric G proteins to regulate downstream second messenger and/or protein kinase cascades. Crystallographic evidence from a prototypic GPCR, the ß2-adrenergic receptor (ß2AR), in complex with its cognate G protein, Gs, has provided a model for how agonist binding promotes conformational changes that propagate through the GPCR and into the nucleotide-binding pocket of the G protein α-subunit to catalyse GDP release, the key step required for GTP binding and activation of G proteins. The structure also offers hints about how G-protein binding may, in turn, allosterically influence ligand binding. Here we provide functional evidence that G-protein coupling to the ß2AR stabilizes a 'closed' receptor conformation characterized by restricted access to and egress from the hormone-binding site. Surprisingly, the effects of G protein on the hormone-binding site can be observed in the absence of a bound agonist, where G-protein coupling driven by basal receptor activity impedes the association of agonists, partial agonists, antagonists and inverse agonists. The ability of bound ligands to dissociate from the receptor is also hindered, providing a structural explanation for the G-protein-mediated enhancement of agonist affinity, which has been observed for many GPCR­G-protein pairs. Our data also indicate that, in contrast to agonist binding alone, coupling of a G protein in the absence of an agonist stabilizes large structural changes in a GPCR. The effects of nucleotide-free G protein on ligand-binding kinetics are shared by other members of the superfamily of GPCRs, suggesting that a common mechanism may underlie G-protein-mediated enhancement of agonist affinity.


Assuntos
Sítio Alostérico , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/farmacologia , Guanina/metabolismo , Guanina/farmacologia , Humanos , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Receptores Adrenérgicos beta 2/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacologia
3.
Nature ; 495(7442): 534-8, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23515162

RESUMO

A long-held tenet of molecular pharmacology is that canonical signal transduction mediated by G-protein-coupled receptor (GPCR) coupling to heterotrimeric G proteins is confined to the plasma membrane. Evidence supporting this traditional view is based on analytical methods that provide limited or no subcellular resolution. It has been subsequently proposed that signalling by internalized GPCRs is restricted to G-protein-independent mechanisms such as scaffolding by arrestins, or GPCR activation elicits a discrete form of persistent G protein signalling, or that internalized GPCRs can indeed contribute to the acute G-protein-mediated response. Evidence supporting these various latter hypotheses is indirect or subject to alternative interpretation, and it remains unknown if endosome-localized GPCRs are even present in an active form. Here we describe the application of conformation-specific single-domain antibodies (nanobodies) to directly probe activation of the ß2-adrenoceptor, a prototypical GPCR, and its cognate G protein, Gs (ref. 12), in living mammalian cells. We show that the adrenergic agonist isoprenaline promotes receptor and G protein activation in the plasma membrane as expected, but also in the early endosome membrane, and that internalized receptors contribute to the overall cellular cyclic AMP response within several minutes after agonist application. These findings provide direct support for the hypothesis that canonical GPCR signalling occurs from endosomes as well as the plasma membrane, and suggest a versatile strategy for probing dynamic conformational change in vivo.


Assuntos
Técnicas Biossensoriais/métodos , Endossomos/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Membrana Celular/química , Membrana Celular/metabolismo , Vesículas Revestidas por Clatrina , AMP Cíclico/metabolismo , Endocitose , Endossomos/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Isoproterenol/farmacologia , Modelos Biológicos , Conformação Proteica , Receptores Adrenérgicos beta 2/imunologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia
4.
Biophys J ; 115(2): 300-312, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021106

RESUMO

G-protein-coupled receptors (GPCRs) control vital cellular signaling pathways. GPCR oligomerization is proposed to increase signaling diversity. However, many reports have arrived at disparate conclusions regarding the existence, stability, and stoichiometry of GPCR oligomers, partly because of cellular complexity and ensemble averaging of intrareconstitution heterogeneities that complicate the interpretation of oligomerization data. To overcome these limitations, we exploited fluorescence-microscopy-based high-content analysis of single proteoliposomes. This allowed multidimensional quantification of intrinsic monomer-monomer interactions of three class A GPCRs (ß2-adrenergic receptor, cannabinoid receptor type 1, and opsin). Using a billion-fold less protein than conventional assays, we quantified oligomer stoichiometries, association constants, and the influence of two ligands and membrane curvature on oligomerization, revealing key similarities and differences for three GPCRs with decidedly different physiological functions. The assays introduced here will assist with the quantitative experimental observation of oligomerization for transmembrane proteins in general.


Assuntos
Multimerização Proteica , Proteolipídeos/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Ligantes , Estrutura Quaternária de Proteína , Transdução de Sinais , Solubilidade
5.
Nat Methods ; 11(9): 931-4, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25086504

RESUMO

Proteoliposome reconstitution is a standard method to stabilize purified transmembrane proteins in membranes for structural and functional assays. Here we quantified intrareconstitution heterogeneities in single proteoliposomes using fluorescence microscopy. Our results suggest that compositional heterogeneities can severely skew ensemble-average proteoliposome measurements but also enable ultraminiaturized high-content screens. We took advantage of this screening capability to map the oligomerization energy of the ß2-adrenergic receptor using ∼10(9)-fold less protein than conventional assays.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Proteolipídeos/química , Espectrometria de Fluorescência/métodos , Nanotecnologia/métodos , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/química
6.
Nature ; 477(7366): 611-5, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21956331

RESUMO

G protein-coupled receptors represent the largest family of membrane receptors that instigate signalling through nucleotide exchange on heterotrimeric G proteins. Nucleotide exchange, or more precisely, GDP dissociation from the G protein α-subunit, is the key step towards G protein activation and initiation of downstream signalling cascades. Despite a wealth of biochemical and biophysical studies on inactive and active conformations of several heterotrimeric G proteins, the molecular underpinnings of G protein activation remain elusive. To characterize this mechanism, we applied peptide amide hydrogen-deuterium exchange mass spectrometry to probe changes in the structure of the heterotrimeric bovine G protein, Gs (the stimulatory G protein for adenylyl cyclase) on formation of a complex with agonist-bound human ß(2) adrenergic receptor (ß(2)AR). Here we report structural links between the receptor-binding surface and the nucleotide-binding pocket of Gs that undergo higher levels of hydrogen-deuterium exchange than would be predicted from the crystal structure of the ß(2)AR-Gs complex. Together with X-ray crystallographic and electron microscopic data of the ß(2)AR-Gs complex (from refs 2, 3), we provide a rationale for a mechanism of nucleotide exchange, whereby the receptor perturbs the structure of the amino-terminal region of the α-subunit of Gs and consequently alters the 'P-loop' that binds the ß-phosphate in GDP. As with the Ras family of small-molecular-weight G proteins, P-loop stabilization and ß-phosphate coordination are key determinants of GDP (and GTP) binding affinity.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animais , Biocatálise , Domínio Catalítico , Bovinos , Cristalografia por Raios X , Medição da Troca de Deutério , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores Adrenérgicos beta 2/ultraestrutura
7.
Nature ; 477(7366): 549-55, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21772288

RESUMO

G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The ß(2) adrenergic receptor (ß(2)AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric ß(2)AR and nucleotide-free Gs heterotrimer. The principal interactions between the ß(2)AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the ß(2)AR include a 14 Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animais , Domínio Catalítico , Bovinos , Cristalização , Cristalografia por Raios X , Ativação Enzimática , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Ratos
8.
Nature ; 469(7329): 175-80, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21228869

RESUMO

G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human ß(2) adrenergic receptor (ß(2)AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive ß(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11 Å outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/imunologia , Nanoestruturas/química , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/imunologia , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animais , Sítios de Ligação , Camelídeos Americanos , Cristalografia por Raios X , Agonismo Inverso de Drogas , Humanos , Fragmentos de Imunoglobulinas/metabolismo , Fragmentos de Imunoglobulinas/farmacologia , Ligantes , Modelos Moleculares , Movimento/efeitos dos fármacos , Opsinas/agonistas , Opsinas/química , Opsinas/metabolismo , Propanolaminas/química , Propanolaminas/metabolismo , Propanolaminas/farmacologia , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/metabolismo
9.
Nature ; 469(7329): 236-40, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21228876

RESUMO

G-protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that modulate biological function by initiating cellular signalling in response to chemically diverse agonists. Despite recent progress in the structural biology of GPCRs, the molecular basis for agonist binding and allosteric modulation of these proteins is poorly understood. Structural knowledge of agonist-bound states is essential for deciphering the mechanism of receptor activation, and for structure-guided design and optimization of ligands. However, the crystallization of agonist-bound GPCRs has been hampered by modest affinities and rapid off-rates of available agonists. Using the inactive structure of the human ß(2) adrenergic receptor (ß(2)AR) as a guide, we designed a ß(2)AR agonist that can be covalently tethered to a specific site on the receptor through a disulphide bond. The covalent ß(2)AR-agonist complex forms efficiently, and is capable of activating a heterotrimeric G protein. We crystallized a covalent agonist-bound ß(2)AR-T4L fusion protein in lipid bilayers through the use of the lipidic mesophase method, and determined its structure at 3.5 Å resolution. A comparison to the inactive structure and an antibody-stabilized active structure (companion paper) shows how binding events at both the extracellular and intracellular surfaces are required to stabilize an active conformation of the receptor. The structures are in agreement with long-timescale (up to 30 µs) molecular dynamics simulations showing that an agonist-bound active conformation spontaneously relaxes to an inactive-like conformation in the absence of a G protein or stabilizing antibody.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Cristalização , Cristalografia por Raios X , Dissulfetos/química , Dissulfetos/metabolismo , Agonismo Inverso de Drogas , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Procaterol/química , Procaterol/metabolismo , Propanolaminas/química , Propanolaminas/metabolismo , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
10.
Nature ; 463(7277): 108-12, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20054398

RESUMO

G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the beta(2) adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.


Assuntos
Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2 , Antagonistas de Receptores Adrenérgicos beta 2 , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação , Cristalografia por Raios X , Agonismo Inverso de Drogas , Etanolaminas/farmacologia , Fumarato de Formoterol , Humanos , Ligantes , Lisina/análogos & derivados , Lisina/metabolismo , Metilação , Modelos Moleculares , Proteínas Mutantes , Ressonância Magnética Nuclear Biomolecular , Propanolaminas/metabolismo , Propanolaminas/farmacologia , Estrutura Terciária de Proteína/efeitos dos fármacos , Eletricidade Estática , Especificidade por Substrato
11.
Nature ; 459(7245): 356-63, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19458711

RESUMO

G-protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants, and so have great potential as therapeutic targets for a broad spectrum of diseases. They are also fascinating molecules from the perspective of membrane-protein structure and biology. Great progress has been made over the past three decades in understanding diverse GPCRs, from pharmacology to functional characterization in vivo. Recent high-resolution structural studies have provided insights into the molecular mechanisms of GPCR activation and constitutive activity.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sequência Conservada , Citoplasma/metabolismo , Humanos , Opsinas/química , Opsinas/metabolismo , Conformação Proteica , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 109(50): E3463-72, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23151510

RESUMO

The steroid cholesterol is an essential component of eukaryotic membranes, and it functionally modulates membrane proteins, including G protein-coupled receptors. To reveal insight into how cholesterol modulates G protein-coupled receptors, we have used dynamic single-molecule force spectroscopy to quantify the mechanical strength and flexibility, conformational variability, and kinetic and energetic stability of structural segments stabilizing the human ß(2)-adrenergic receptor (ß(2)AR) in the absence and presence of the cholesterol analog cholesteryl hemisuccinate (CHS). CHS considerably increased the kinetic, energetic, and mechanical stability of almost every structural segment at sufficient magnitude to alter the structure and functional relationship of ß(2)AR. One exception was the structural core segment of ß(2)AR, which establishes multiple ligand binding sites, and its properties were not significantly influenced by CHS.


Assuntos
Ésteres do Colesterol/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Animais , Fenômenos Biomecânicos , Ésteres do Colesterol/química , Metabolismo Energético , Humanos , Cinética , Microscopia de Força Atômica , Modelos Moleculares , Conformação Proteica , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Proteolipídeos/química , Proteolipídeos/metabolismo , Receptores Adrenérgicos beta 2/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Resposta a Proteínas não Dobradas
13.
Mol Pharmacol ; 85(3): 472-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24319111

RESUMO

The biologic activity induced by ligand binding to orthosteric or allosteric sites on a G protein-coupled receptor (GPCR) is mediated by stabilization of specific receptor conformations. In the case of the ß2 adrenergic receptor, these ligands are generally small-molecule agonists or antagonists. However, a monomeric single-domain antibody (nanobody) from the Camelid family was recently found to allosterically bind and stabilize an active conformation of the ß2-adrenergic receptor (ß2AR). Here, we set out to study the functional interaction of 18 related nanobodies with the ß2AR to investigate their roles as novel tools for studying GPCR biology. Our studies revealed several sequence-related nanobody families with preferences for active (agonist-occupied) or inactive (antagonist-occupied) receptors. Flow cytometry analysis indicates that all nanobodies bind to epitopes displayed on the intracellular receptor surface; therefore, we transiently expressed them intracellularly as "intrabodies" to test their effects on ß2AR-dependent signaling. Conformational specificity was preserved after intrabody conversion as demonstrated by the ability for the intracellularly expressed nanobodies to selectively bind agonist- or antagonist-occupied receptors. When expressed as intrabodies, they inhibited G protein activation (cyclic AMP accumulation), G protein-coupled receptor kinase (GRK)-mediated receptor phosphorylation, ß-arrestin recruitment, and receptor internalization to varying extents. These functional effects were likely due to either steric blockade of downstream effector (Gs, ß-arrestin, GRK) interactions or stabilization of specific receptor conformations which do not support effector coupling. Together, these findings strongly implicate nanobody-derived intrabodies as novel tools to study GPCR biology.


Assuntos
Receptores Adrenérgicos beta 2/metabolismo , Anticorpos de Domínio Único/metabolismo , Sequência de Aminoácidos , Linhagem Celular , AMP Cíclico/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Células HEK293 , Humanos , Dados de Sequência Molecular , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Alinhamento de Sequência
14.
Proc Natl Acad Sci U S A ; 108(38): 16086-91, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21914848

RESUMO

The active-state complex between an agonist-bound receptor and a guanine nucleotide-free G protein represents the fundamental signaling assembly for the majority of hormone and neurotransmitter signaling. We applied single-particle electron microscopy (EM) analysis to examine the architecture of agonist-occupied ß(2)-adrenoceptor (ß(2)AR) in complex with the heterotrimeric G protein Gs (Gαsßγ). EM 2D averages and 3D reconstructions of the detergent-solubilized complex reveal an overall architecture that is in very good agreement with the crystal structure of the active-state ternary complex. Strikingly however, the α-helical domain of Gαs appears highly flexible in the absence of nucleotide. In contrast, the presence of the pyrophosphate mimic foscarnet (phosphonoformate), and also the presence of GDP, favor the stabilization of the α-helical domain on the Ras-like domain of Gαs. Molecular modeling of the α-helical domain in the 3D EM maps suggests that in its stabilized form it assumes a conformation reminiscent to the one observed in the crystal structure of Gαs-GTPγS. These data argue that the α-helical domain undergoes a nucleotide-dependent transition from a flexible to a conformationally stabilized state.


Assuntos
Cristalografia por Raios X , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Adrenérgicos beta 2/química , Animais , Cristalização , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Guanosina 5'-O-(3-Tiotrifosfato)/química , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/ultraestrutura
15.
J Phys Chem B ; 128(9): 2124-2133, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38391238

RESUMO

G-protein-coupled receptors (GPCRs) are structurally flexible membrane proteins that mediate a host of physiological responses to extracellular ligands like hormones and neurotransmitters. Fine features of their dynamic structural behavior are hypothesized to encode the functional plasticity seen in GPCR activity, where ligands with different efficacies can direct the same receptor toward different signaling phenotypes. Although the number of GPCR crystal structures is increasing, the receptors are characterized by complex and poorly understood conformational landscapes. Therefore, we employed a fluorescence microscopy assay to monitor conformational dynamics of single ß2 adrenergic receptors (ß2ARs). To increase the biological relevance of our findings, we decided not to reconstitute the receptor in detergent micelles but rather lipid membranes as proteoliposomes. The conformational dynamics were monitored by changes in the intensity of an environmentally sensitive boron-dipyrromethene (BODIPY 493/503) fluorophore conjugated to an endogenous cysteine (located at the cytoplasmic end of the sixth transmembrane helix of the receptor). Using total internal reflection fluorescence microscopy (TIRFM) and a single small unilamellar liposome assay that we previously developed, we followed the real-time dynamic properties of hundreds of single ß2ARs reconstituted in a native-like environment─lipid membranes. Our results showed that ß2AR-BODIPY fluctuates between several states of different intensity on a time scale of seconds, compared to BODIPY-lipid conjugates that show almost entirely stable fluorescence emission in the absence and presence of the full agonist BI-167107. Agonist stimulation changes the ß2AR dynamics, increasing the population of states with higher intensities and prolonging their durations, consistent with bulk experiments. The transition density plot demonstrates that ß2AR-BODIPY, in the absence of the full agonist, interconverts between states of low and moderate intensity, while the full agonist renders transitions between moderate and high-intensity states more probable. This redistribution is consistent with a mechanism of conformational selection and is a promising first step toward characterizing the conformational dynamics of GPCRs embedded in a lipid bilayer.


Assuntos
Compostos de Boro , Lipídeos , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/química , Conformação Molecular , Receptores Adrenérgicos , Receptores Adrenérgicos beta 2/química , Ligantes
16.
Nat Methods ; 7(12): 1003-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21037590

RESUMO

The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.


Assuntos
Detergentes/química , Proteínas de Membrana/química , Cromatografia em Gel/métodos , Cristalização , Cristalografia por Raios X/métodos , Estabilidade de Medicamentos , Escherichia coli/enzimologia , Glicóis/química , Cinética , Maltose/química , Proteínas de Membrana/isolamento & purificação , Modelos Moleculares , Estabilidade Proteica , Rhodobacter capsulatus/química , Rhodobacter capsulatus/genética , Solubilidade , Simportadores/química , Simportadores/metabolismo , Termodinâmica , Difração de Raios X
17.
Chemistry ; 19(46): 15645-51, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24123610

RESUMO

Integral membrane proteins play central roles in controlling the flow of information and molecules across membranes. Our understanding of membrane protein structures and functions, however, is seriously limited, mainly due to difficulties in handling and analysing these proteins in aqueous solution. The use of a detergent or other amphipathic agents is required to overcome the intrinsic incompatibility between the large lipophilic surfaces displayed by the membrane proteins in their native forms and the polar solvent molecules. Here, we introduce new tripod amphiphiles displaying favourable behaviours toward several membrane protein systems, leading to an enhanced protein solubilisation and stabilisation compared to both conventional detergents and previously described tripod amphiphiles.


Assuntos
Detergentes/química , Proteínas de Membrana/análise , Solventes/química , Tensoativos/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Solubilidade
18.
Nature ; 450(7168): 383-7, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17952055

RESUMO

Structural analysis of G-protein-coupled receptors (GPCRs) for hormones and neurotransmitters has been hindered by their low natural abundance, inherent structural flexibility, and instability in detergent solutions. Here we report a structure of the human beta2 adrenoceptor (beta2AR), which was crystallized in a lipid environment when bound to an inverse agonist and in complex with a Fab that binds to the third intracellular loop. Diffraction data were obtained by high-brilliance microcrystallography and the structure determined at 3.4 A/3.7 A resolution. The cytoplasmic ends of the beta2AR transmembrane segments and the connecting loops are well resolved, whereas the extracellular regions of the beta2AR are not seen. The beta2AR structure differs from rhodopsin in having weaker interactions between the cytoplasmic ends of transmembrane (TM)3 and TM6, involving the conserved E/DRY sequences. These differences may be responsible for the relatively high basal activity and structural instability of the beta2AR, and contribute to the challenges in obtaining diffraction-quality crystals of non-rhodopsin GPCRs.


Assuntos
Receptores Adrenérgicos beta 2/química , Antagonistas de Receptores Adrenérgicos beta 2 , Animais , Linhagem Celular , Cristalização , Cristalografia por Raios X , Agonismo Inverso de Drogas , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Leucina/metabolismo , Lipídeos/química , Modelos Moleculares , Conformação Proteica , Receptores Adrenérgicos beta 2/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Spodoptera
19.
EMBO J ; 27(2): 384-93, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18188154

RESUMO

Beta1- and beta2-adrenergic receptors (betaARs) are highly homologous, yet they play clearly distinct roles in cardiac physiology and pathology. Myocyte contraction, for instance, is readily stimulated by beta1AR but not beta2AR signaling, and chronic stimulation of the two receptors has opposing effects on myocyte apoptosis and cell survival. Differences in the assembly of macromolecular signaling complexes may explain the distinct biological outcomes. Here, we demonstrate that beta1AR forms a signaling complex with a cAMP-specific phosphodiesterase (PDE) in a manner inherently different from a beta2AR/beta-arrestin/PDE complex reported previously. The beta1AR binds a PDE variant, PDE4D8, in a direct manner, and occupancy of the receptor by an agonist causes dissociation of this complex. Conversely, agonist binding to the beta2AR is a prerequisite for the recruitment of a complex consisting of beta-arrestin and the PDE4D variant, PDE4D5, to the receptor. We propose that the distinct modes of interaction with PDEs result in divergent cAMP signals in the vicinity of the two receptors, thus, providing an additional layer of complexity to enforce the specificity of beta1- and beta2-adrenoceptor signaling.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular , Células Cultivadas , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Humanos , Imunoprecipitação , Camundongos , Modelos Biológicos , Células Musculares/citologia , Células Musculares/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/fisiologia , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/fisiologia , Transdução de Sinais
20.
Proc Natl Acad Sci U S A ; 106(23): 9501-6, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19470481

RESUMO

G protein-coupled receptors (GPCRs) mediate the majority of physiologic responses to hormones and neurotransmitters. However, many GPCRs exhibit varying degrees of agonist-independent G protein activation. This phenomenon is referred to as basal or constitutive activity. For many of these GPCRs, drugs classified as inverse agonists can suppress basal activity. There is a growing body of evidence that basal activity is physiologically relevant, and the ability of a drug to inhibit basal activity may influence its therapeutic properties. However, the molecular mechanism for basal activation and inhibition of basal activity by inverse agonists is poorly understood and difficult to study, because the basally active state is short-lived and represents a minor fraction of receptor conformations. Here, we investigate basal activation of the G protein Gs by the beta(2) adrenergic receptor (beta(2)AR) by using purified receptor reconstituted into recombinant HDL particles with a stoichiometric excess of Gs. The beta(2)AR is site-specifically labeled with a small, environmentally sensitive fluorophore enabling direct monitoring of agonist- and Gs-induced conformational changes. In the absence of an agonist, the beta(2)AR and Gs can be trapped in a complex by enzymatic depletion of guanine nucleotides. Formation of the complex is enhanced by the agonist isoproterenol, and it rapidly dissociates on exposure to concentrations of GTP and GDP found in the cytoplasm. The inverse agonist ICI prevents formation of the beta(2)AR-Gs complex, but has little effect on preformed complexes. These results provide insights into G protein-induced conformational changes in the beta(2)AR and the structural basis for ligand efficacy.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Ligantes , Receptores Adrenérgicos beta 2/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2 , Compostos Bicíclicos com Pontes , Proteínas de Ligação ao GTP/química , Humanos , Estabilidade Proteica , Receptores Adrenérgicos beta 2/química , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA