Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 632(8027): 1060-1066, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39039241

RESUMO

General circulation models (GCMs) are the foundation of weather and climate prediction1,2. GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting3,4. However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system.

2.
Phys Rev Lett ; 126(9): 098302, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750168

RESUMO

Neural networks can emulate nonlinear physical systems with high accuracy, yet they may produce physically inconsistent results when violating fundamental constraints. Here, we introduce a systematic way of enforcing nonlinear analytic constraints in neural networks via constraints in the architecture or the loss function. Applied to convective processes for climate modeling, architectural constraints enforce conservation laws to within machine precision without degrading performance. Enforcing constraints also reduces errors in the subsets of the outputs most impacted by the constraints.

3.
Proc Natl Acad Sci U S A ; 115(39): 9684-9689, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30190437

RESUMO

The representation of nonlinear subgrid processes, especially clouds, has been a major source of uncertainty in climate models for decades. Cloud-resolving models better represent many of these processes and can now be run globally but only for short-term simulations of at most a few years because of computational limitations. Here we demonstrate that deep learning can be used to capture many advantages of cloud-resolving modeling at a fraction of the computational cost. We train a deep neural network to represent all atmospheric subgrid processes in a climate model by learning from a multiscale model in which convection is treated explicitly. The trained neural network then replaces the traditional subgrid parameterizations in a global general circulation model in which it freely interacts with the resolved dynamics and the surface-flux scheme. The prognostic multiyear simulations are stable and closely reproduce not only the mean climate of the cloud-resolving simulation but also key aspects of variability, including precipitation extremes and the equatorial wave spectrum. Furthermore, the neural network approximately conserves energy despite not being explicitly instructed to. Finally, we show that the neural network parameterization generalizes to new surface forcing patterns but struggles to cope with temperatures far outside its training manifold. Our results show the feasibility of using deep learning for climate model parameterization. In a broader context, we anticipate that data-driven Earth system model development could play a key role in reducing climate prediction uncertainty in the coming decade.

4.
Sci Adv ; 10(6): eadj7250, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324696

RESUMO

Projecting climate change is a generalization problem: We extrapolate the recent past using physical models across past, present, and future climates. Current climate models require representations of processes that occur at scales smaller than model grid size, which have been the main source of model projection uncertainty. Recent machine learning (ML) algorithms hold promise to improve such process representations but tend to extrapolate poorly to climate regimes that they were not trained on. To get the best of the physical and statistical worlds, we propose a framework, termed "climate-invariant" ML, incorporating knowledge of climate processes into ML algorithms, and show that it can maintain high offline accuracy across a wide range of climate conditions and configurations in three distinct atmospheric models. Our results suggest that explicitly incorporating physical knowledge into data-driven models of Earth system processes can improve their consistency, data efficiency, and generalizability across climate regimes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA