Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 35(16): 5525-5533, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30889953

RESUMO

Recently, there has been a growth of research on the nonconjugated polymer exhibiting fluorescence property and it would be exciting if fluorescence property is developed in zwitterionic polymers because of their good water solubility. Poly(vinylidene fluoride) (PVDF) grafted with poly(dimethyl amino ethyl methacrylate) (PDMAEMA) is fractionated and a highly water-soluble fraction (PVDM-1) is quaternized with 1,3-propane sultone, producing a zwitterionic polymer, PVDF- g-PDMAEMA-sultone (PVDMS). PVDM-1 shows the fluorescence property with very low quantum yield (1%) in water, but on quaternization, fluorescence quantum yield increases to 8%. Transmission electron microscopy results indicate that the PVDM-1 cast from water has vesicular morphology, whereas PVDMS exhibits aggregated vesicular morphology. The 1H NMR spectra indicate the presence of 72 mol % DMAEMA in PVDM-1 wherein 66% of -NMe2 groups is quaternized upon postpolymerization modification. PVDM-1 exhibits absorption peaks at 210, 276, and 457 nm with a hump at 430 nm, whereas PVDMS exhibits two absorption peaks at 203 and 297 nm. PVDM-1 exhibits a broad emission peak at 534 nm, whereas PVDMS exhibits a sharp emission peak at 438 nm. An attempt has been made from density functional theory calculations to shed light on the origin of fluorescence in both PVDM-1 and in the zwitterionic PVDMS. The excitonic decay occurs from the lowest unoccupied molecular orbital (LUMO) of carbonyl group to the highest occupied molecular orbital (HOMO) of tertiary amine group for PVDM-1, whereas in PVDMS, the excitonic transition occurs from the LUMO situated over the quaternary ammonium group to the HOMO located on the electron-rich terminal sulfonate group.

3.
Nat Mater ; 16(12): 1216-1224, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29058729

RESUMO

Non-volatile memories will play a decisive role in the next generation of digital technology. Flash memories are currently the key player in the field, yet they fail to meet the commercial demands of scalability and endurance. Resistive memory devices, and in particular memories based on low-cost, solution-processable and chemically tunable organic materials, are promising alternatives explored by the industry. However, to date, they have been lacking the performance and mechanistic understanding required for commercial translation. Here we report a resistive memory device based on a spin-coated active layer of a transition-metal complex, which shows high reproducibility (∼350 devices), fast switching (≤30 ns), excellent endurance (∼1012 cycles), stability (>106 s) and scalability (down to ∼60 nm2). In situ Raman and ultraviolet-visible spectroscopy alongside spectroelectrochemistry and quantum chemical calculations demonstrate that the redox state of the ligands determines the switching states of the device whereas the counterions control the hysteresis. This insight may accelerate the technological deployment of organic resistive memories.

4.
Adv Mater ; 35(37): e2204551, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36043246

RESUMO

Electronic transitions in molecular-circuit elements hinge on complex interactions between molecules and ions, offering a multidimensional parameter space to embed, access, and optimize material functionalities for target-specific applications. This opportunity is not cultivated in molecular memristors because their low-temperature charge transport, which is a route to decipher molecular many-body interactions, is unexplored. To address this, robust, temperature-resilient molecular memristors based on a Ru complex of an azo aromatic ligand are designed, and current-voltage sweep measurements from room temperature down to 2 K with different cooling protocols are performed. By freezing out or activating different components of supramolecular dynamics, the local Coulombic interactions between the molecules and counterions that affect the electronic transport can be controlled. Operating conditions are designed where functionalities spanning bipolar, unipolar, nonvolatile, and volatile memristors with sharp as well as gradual analog transitions are captured within a single device. A mathematical design space evolves, thereof comprising 36 tuneable parameters in which all possible steady-state functional variations in a memristor characteristic can be attainable. This enables a deterministic design route to engineer neuromorphic devices with unprecedented control over the transformation characteristics governing their functional flexibility and tunability.

5.
Nat Nanotechnol ; 15(5): 380-389, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32203436

RESUMO

Electronic symmetry breaking by charge disproportionation results in multifaceted changes in the electronic, magnetic and optical properties of a material, triggering ferroelectricity, metal/insulator transition and colossal magnetoresistance. Yet, charge disproportionation lacks technological relevance because it occurs only under specific physical conditions of high or low temperature or high pressure. Here we demonstrate a voltage-triggered charge disproportionation in thin molecular films of a metal-organic complex occurring in ambient conditions. This provides a technologically relevant molecular route for simultaneous realization of a ternary memristor and a binary memcapacitor, scalable down to a device area of 60 nm2. Supported by mathematical modelling, our results establish that multiple memristive states can be functionally non-volatile, yet discrete-a combination perceived as theoretically prohibited. Our device could be used as a binary or ternary memristor, a binary memcapacitor or both concomitantly, and unlike the existing 'continuous state' memristors, its discrete states are optimal for high-density, ultra-low-energy digital computing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA