RESUMO
Optical see-through augmented reality (AR) systems are a next-generation computing platform that offer unprecedented user experiences by seamlessly combining physical and digital content. Many of the traditional challenges of these displays have been significantly improved over the last few years, but AR experiences offered by today's systems are far from seamless and perceptually realistic. Mutually consistent occlusions between physical and digital objects are typically not supported. When mutual occlusion is supported, it is only supported for a fixed depth. We propose a new optical see-through AR display system that renders mutual occlusion in a depth-dependent, perceptually realistic manner. To this end, we introduce varifocal occlusion displays based on focus-tunable optics, which comprise a varifocal lens system and spatial light modulators that enable depth-corrected hard-edge occlusions for AR experiences. We derive formal optimization methods and closed-form solutions for driving this tunable lens system and demonstrate a monocular varifocal occlusion-capable optical see-through AR display capable of perceptually realistic occlusion across a large depth range.
RESUMO
Traditional optical manufacturing poses a great challenge to near-eye display designers due to large lead times in the order of multiple weeks, limiting the abilities of optical designers to iterate fast and explore beyond conventional designs. We present a complete near-eye display manufacturing pipeline with a day lead time using commodity hardware. Our novel manufacturing pipeline consists of several innovations including a rapid production technique to improve surface of a 3D printed component to optical quality suitable for near-eye display application, a computational design methodology using machine learning and ray tracing to create freeform static projection screen surfaces for near-eye displays that can represent arbitrary focal surfaces, and a custom projection lens design that distributes pixels non-uniformly for a foveated near-eye display hardware design candidate. We have demonstrated untethered augmented reality near-eye display prototypes to assess success of our technique, and show that a ski-goggles form factor, a large monocular field of view (30o×55o), and a resolution of 12 cycles per degree can be achieved.
RESUMO
In this paper, we present our novel design for switchable AR/VR near-eye displays which can help solve the vergence-accommodation-conflict issue. The principal idea is to time-multiplex virtual imagery and real-world imagery and use a tunable lens to adjust focus for the virtual display and the see-through scene separately. With this novel design, prescription eyeglasses for near- and far-sighted users become unnecessary. This is achieved by integrating the wearer's corrective optical prescription into the tunable lens for both virtual display and see-through environment. We built a prototype based on the design, comprised of micro-display, optical systems, a tunable lens, and active shutters. The experimental results confirm that the proposed near-eye display design can switch between AR and VR and can provide correct accommodation for both.
Assuntos
Realidade Aumentada , Gráficos por Computador , Processamento de Imagem Assistida por Computador/métodos , Realidade Virtual , Desenho de Equipamento , Óculos , Holografia , HumanosRESUMO
We introduce an optical design and a rendering pipeline for a full-color volumetric near-eye display which simultaneously presents imagery with near-accurate per-pixel focus across an extended volume ranging from 15cm (6.7 diopters) to 4M (0.25 diopters), allowing the viewer to accommodate freely across this entire depth range. This is achieved using a focus-tunable lens that continuously sweeps a sequence of 280 synchronized binary images from a high-speed, Digital Micromirror Device (DMD) projector and a high-speed, high dynamic range (HDR) light source that illuminates the DMD images with a distinct color and brightness at each binary frame. Our rendering pipeline converts 3-D scene information into a 2-D surface of color voxels, which are decomposed into 280 binary images in a voxel-oriented manner, such that 280 distinct depth positions for full-color voxels can be displayed.