Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tomography ; 10(8): 1192-1204, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39195725

RESUMO

Spine radiographs in the standing position are the recommended standard for diagnosing idiopathic scoliosis. Though the deformity exists in 3D, its diagnosis is currently carried out with the help of 2D radiographs due to the unavailability of an efficient, low-cost 3D alternative. Computed tomography (CT) and magnetic resonance imaging (MRI) are not suitable in this case, as they are obtained in the supine position. Research on 3D modelling of scoliotic spine began with multiplanar radiographs and later moved on to biplanar radiographs and finally a single radiograph. Nonetheless, modern advances in diagnostic imaging have the potential to preserve image quality and decrease radiation exposure. They include the DIERS formetric scanner system, the EOS imaging system, and ultrasonography. This review article briefly explains the technology behind each of these methods. They are compared with the standard imaging techniques. The DIERS system and ultrasonography are radiation free but have limitations with respect to the quality of the 3D model obtained. There is a need for 3D imaging technology with less or zero radiation exposure and that can produce a quality 3D model for diseases like adolescent idiopathic scoliosis. Accurate 3D models are crucial in clinical practice for diagnosis, planning surgery, patient follow-up examinations, biomechanical applications, and computer-assisted surgery.


Assuntos
Imageamento Tridimensional , Escoliose , Ultrassonografia , Escoliose/diagnóstico por imagem , Humanos , Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia , Tomografia Computadorizada por Raios X/métodos
2.
Heliyon ; 10(11): e32325, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947435

RESUMO

Linearity and intermodulation distortion are very crucial parameters for RFICs design. Therefore, in this work, a detailed comparative analysis on linearity and intermodulation distortion of single metal (SMG) and double metal (DMG) double gate junction less transistor (JLT) is done using TCAD silvaco suite. Furthermore, the effects of temperature fluctuation, gate length variation, and gate material engineering on the linearity performance of both devices are also studied. A few significant figures of merit, including Voltage Intercept Point 2 (VIP2), Voltage Intercept Point 3 (VIP3), Third Order Intercept Power (IIP3), 1 dB Compression Point (P1dB), Third Order Intermodulation Distortion (IMD3), and the transconductance derivative parameters First Order Transconductance (gm1), Second Order Transconductance (gm2), and Third Order Transconductance (gm3) are used to assess the device linearity and intermodulation distortion of SMG and DMG JLT's. The findings show that higher VIP2, VIP3, IIP3, 1-dB compression point and lower gm3, IMD3 values are obtained for the SMG JLT device when compared to its counterpart DMG JLT. SMG JLT, which assures strong linearity and low distortion.

3.
Sustain Comput ; 35: 100651, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37521170

RESUMO

With the ever-increasing awareness among people regarding their health, visiting a doctor has become quite common. However, with the onset of the COVID-19 pandemic, home-based consultations are gaining popularity. Nevertheless, the worries over privacy and the lack of willingness to assist patients by the medical professionals in the online consultation process have made current models ineffective. In this paper, we present an advanced protected blockchain-based consultation model for minor medical conditions. Our model not only ensures users' privacy but by incorporating a calculation model, it also offers an opportunity for consulting end-users to voluntarily take part in the consultation process. Our work proposes a smart contract based on machine learning to be implemented for the prediction of a score of a professional who consults based on various prioritized parameters. This is done by using word2vec and TF-IDF weighting to classify the question and cosine similarity scores for detailed orientation analysis. Based on this score, the patient is charged, and simultaneously, the responder is awarded ether. An incentivized method leads to more accessible healthcare while reducing the cost itself.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA