Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Magn Reson Chem ; 61(9-10): 544-553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37551084

RESUMO

13 C nuclear magnetic resonance (NMR) is traditionally considered an insensitive technique, requiring long acquisition times to measure dilute functionalities on large polymers. With the introduction of cryoprobes and better electronics, sensitivity has improved in a way that allows measurements to take less than 1/20th the time that they previously did. Unfortunately, a high Q-factor with cryoprobes creates baseline curvature related to acoustic ringing that affects quantitative NMR analyses. Manual baseline correction is commonly used to compensate for the baseline roll, but it is a time-intensive process. The outcome of manual baseline correction can vary depending on processing parameters, especially for complicated spectra. Additionally, it can be challenging to distinguish between broad peaks and baseline rolls. A new anti-ring pulse sequence (zgig_pisp) was previously reported to improve on the incumbent single pulse experiment (zgig). The original report presented limited comparison data with 13 C NMR, but a thorough validation is needed before broader implementation can be considered. In this work, we report the round-robin testing and comparison of zgig_pisp and zgig pulse sequences. During the testing phase, we found that zgig_pisp is practically equivalent to zgig to ±2% for the majority of integrals examined. Additionally, a short broadband inversion pulse (BIP) was demonstrated as an alternative to the originally reported adiabatic CHIRP shaped pulse. The zgig_pisp pulse sequence code for Bruker spectrometers is also simplified.

2.
Rapid Commun Mass Spectrom ; 34 Suppl 2: e8713, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31887235

RESUMO

RATIONALE: Tröger's base polymers of intrinsic microporosity (PIMs) are receiving increasing attention for applications such as polymer molecular sieve membranes. Development of novel membrane materials requires microstructure analysis in order to overcome processing and applications challenges. This study aims to address these challenges and overcome some of the solubility/aggregation issues that hinder the analysis of these materials. METHODS: A combination of matrix-assisted laser desorption/ionization mass spectrometry and collision-induced dissociation was used to examine the reaction products of unfunctionalized Tröger's base PIMs. RESULTS: Enhanced data mining, using ultrahigh-resolution mass spectrometry and statistical analysis, yielded a wealth of information on the molecular mass, chemical connectivity, and end groups of species generated during synthesis. Modifications of interest include N-methyl, N-methanimine, N-formyl, and N-methylol end-capping moieties, as well as incomplete backbone methanodiazocine rings with missing bridging methylene linkages. Most importantly, a general fragmentation mechanism, supported by computational modeling, was developed to assist in the rapid identification of main-chain and end-group modifications in Tröger's base PIMs. CONCLUSIONS: Unfunctionalized Tröger's base polymers were selected as a model system, to thoroughly study their end-group modification chemistry. This model system could then be used to gain insights into complex hydroxy-functional PIM materials.

3.
J Am Chem Soc ; 135(2): 683-90, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23276248

RESUMO

The electronic structures of phenylnitrenes with anionic π-donating substituents are investigated by using mass spectrometry and electronic structure calculations. Reactions of para-CH(2)(-)-substituted phenylnitrene, formed by dissociative deprotonation of p-azidotoluene, with CS(2) and NO indicate that it has a closed-shell singlet ground state, whereas reactions of p-oxidophenylnitrene formed by dissociative deprotonation of p-azidophenol indicate either a triplet ground state or a singlet with a small singlet-triplet splitting. The ground electronic state assignments based on ion reactivity are consistent with electronic structure calculations. The stability of the closed-shell singlet states in nitrenes is shown by Natural Resonance Theory to be very sensitive to the amount of deprotonated-imine character in the wave function, such that large changes in state energies can be achieved by small modifications of the electronic structure.

4.
J Phys Chem A ; 115(37): 10353-62, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21812461

RESUMO

The absolute enthalpies of formation of 3,4-, 2,3-, and/or 2,4-didehydropyridines (3,4-, 2,3- and 2,4-pyridynes) have been determined by using energy-resolved collision-induced dissociation of deprotonated 2- and 3-chloropyridines. Bracketing experiments find the gas-phase acidities of 2- and 3-chloropyridines to be 383 ± 2 and 378 ± 2 kcal/mol, respectively. Whereas deprotonation of 3-chloropyridine leads to formation of a single ion isomer, deprotonation of the 2-chloro isomer results in a nearly 60:40 mixture of regioisomers. The enthalpy of formation of 3,4-pyridyne is measured to be 121 ± 3 kcal/mol by using the chloride dissociation energy for deprotonated 3-chloropyridine. The structure of the product formed upon dissociation of the ion from 2-chloropyridine cannot be unequivocally assigned because of the isomeric mixture of reactant ions and the fact that the potential neutral products (2,3-pyridyne and 2,4-pyridyne) are predicted by high level spin-flip coupled-cluster calculations to be nearly the same in energy. Consequently, the enthalpies of formation for both neutral products are assigned to be 130 ± 3 kcal/mol. Comparison of the enthalpies of dehydrogenation of benzene and pyridine indicates that the nitrogen in the pyridine ring does not have any effect on the stability of the aryne triple bond in 3,4-pyridyne, destabilizes the aryne triple bond in 2,3-pyridyne, and stabilizes the 1,3-interaction in 2,4-pyridyne compared to that in m-benzyne. Natural bond order calculations show that the effects on the 2,3- and 2,4-pyridynes result from polarization of the electrons caused by interaction with the lone pair. The polarization in 2,4-pyridyne is stabilizing because it creates a 1,2-interaction between the nitrogen and dehydrocarbons that is stronger than the 1,3-interaction between the dehydrocarbons.


Assuntos
Piridinas/síntese química , Termodinâmica , Estrutura Molecular , Piridinas/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA