Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Curr Microbiol ; 81(3): 83, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294556

RESUMO

Zinc-solubilizing bacteria (ZSB) can convert insoluble zinc to an accessible form and increase Zn bioavailability in soil, which helps mitigate Zn deficiency in crops. In this study, different bacterial strains were screened for different Zn solubilization and plant growth promotion traits. Two bacterial strains, Acinetobacter pittii DJ55 and Stenotrophomonas maltophilia DJ24, were tested for their Zn-solubilizing potential on plate media, and both showed variable levels of Zn solubilization. The results showed that the bacterial strains applied to the plants in the pot experiment caused improvements in growth parameters compared to control conditions. DJ55, when applied with an insoluble source, enhanced plant height, leaf number, and leaf area compared to DJ24 and control conditions, while the maximum fruit weight was noticed in plants treated with ZnSO4. An increase in chlorophyll contents was noted in plants treated with ZnSO4, while maximum carotenoid contents were observed in plants treated with DJ55 + ZnO when compared with their controls. Plants supplemented with ZnO and DJ55 showed higher zinc content and iron content as compared to their respective controls. The expression patterns of the SLZIP5 and SLZIP4 genes were changed in the root and shoot. Application of ZnO stimulates both gene expression and protein synthesis in tomato roots and shoots. Inoculation of tomato plants with ZSB and insoluble ZnO reduced the expression of the SLZIP5 and SLZIP4 genes in the root and shoot. In conclusion, both strains can be considered as potential zinc-solubilizing bioinoculants to promote the growth and production yield of tomato.


Assuntos
Solanum lycopersicum , Óxido de Zinco , Rizosfera , Proteínas de Membrana Transportadoras/genética , Bactérias , Zinco
2.
Chem Biodivers ; 21(2): e202301815, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38152840

RESUMO

Pistacia chinensis subsp. integerrima (J.L. Stewart) Rech. f. is a plant known for its therapeutic applications in traditional medicine, which are related to its antimicrobial, anticancer, antioxidant, anti-inflammatory, analgesic, antidiarrheal, and muscle relaxant properties. The galls of P. chinensis are rich in triterpenes and flavonoids, and we here report the extraction of pistagremic acid (1), apigenin (2) and sakuranetin (3) from this source. The isolated compounds were tested against Aspergillus flavus, Candida albicans, Candida glabrata, Fusarium solani, Microsporum canis and Trichoderma longibrachiatum. The results highlighted the antimicrobial activity of flavonoids 2 and 3, suggesting that this class of molecules may be responsible for the effect related to the traditional use. On the other hand, when the compounds and the extract were tested for their antiproliferative activity on a panel of 4 human cancer cell lines, the triterpene pistagremic acid (1) showed a higher potential, thus demonstrating a different bioactivity profile. Structure-based docking and molecular dynamics simulations were used to help the interpretation of experimental results. Taken together, the here reported findings pave the way for the rationalization of the use of P. chinensis extracts, highlighting the contributions of the different components of galls to the observed bioactivity.


Assuntos
Pistacia , Triterpenos , Humanos , Antifúngicos/farmacologia , Triterpenos/farmacologia , Flavonoides/farmacologia , Extratos Vegetais
3.
Bioprocess Biosyst Eng ; 47(8): 1197-1211, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38512495

RESUMO

In the current study, the bottlebrush [Callistemon viminalis (Sol. ex Gaertn.) G. Don] plant was selected for the green synthesis of silver (Ag) and gold (Au) nanoparticles and to evaluate its antibacterial and antifungal activities. Phytochemical screening of C. viminalis confirmed the presence of alkaloids, anthraquinones, saponins, tannins, betacyanins, phlobatanins, coumarins, terpenoids, steroids, glycosides, and proteins. To characterize the synthesized Ag and Au NPs, UV-Visible spectroscopy, FTIR spectroscopy for functional group identification, field emission scanning electron microscopy (FE-SEM) for particle size, and elemental analysis were performed using EDX. The UV-Visible absorption spectra of the green-synthesized Ag and Au nanoparticles were found to have a maximum absorption band at 420 nm for Ag NPs and 525 nm for Au NPs. FE-SEM analysis of the synthesized NPs revealed a circular shape with a size of 100 nm. Elemental analysis was performed for the synthesis of Ag and Au NPs, which confirmed the purity of the nanoparticles. The greenly synthesized Ag and Au NPs were also evaluated for their anti-bacterial and anti-fungal activities, which exhibited prominent inhibition activities against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans, C. krusei, Aspergillus sp., and Trichoderma species. The highest zone of inhibition 15.5 ± 0.75 and 15 ± 0.85 mm was observed for Ag NPs against E. coli and P. aeruginosa. Similarly, Trichoderma sp. and Aspergillus sp. were inhibited by Ag NPs up to 13.5 ± 0.95 and 13 ± 0.70 mm. This work will open doors for the development of new antimicrobial agents using green chemistry.


Assuntos
Anti-Infecciosos , Ouro , Química Verde , Nanopartículas Metálicas , Extratos Vegetais , Prata , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Ouro/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Fungos/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química
4.
Saudi Pharm J ; 32(2): 101936, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38261938

RESUMO

In this work, we investigated Diospyros kaki extract and an isolated compound for their potential as xanthine oxidase (XO) inhibitors, a target enzyme involved in inflammatory disorders. The prepared extract was subjected to column chromatography, and dinaphthodiospyrol S was isolated. Then XO inhibitory properties were assessed using a spectrophotometry microplate reader. DMSO was taken as a negative control, and allopurinol was used as a standard drug. The molecular docking study of the isolated compound to the XO active site was performed, followed by visualization and protein-ligand interaction. The defatted chloroform extract showed the highest inhibitory effect, followed by the chloroform extract and the isolated compound. The isolated compound exhibited significant inhibitory activity against XO with an IC50 value of 1.09 µM. Molecular docking studies showed that the compound strongly interacts with XO, forming hydrogen bond interactions with Arg149 and Cys113 and H-pi interactions with Cys116 and Leu147. The binding score of -7.678 kcal/mol further supported the potential of the isolated compound as an XO inhibitor. The quantum chemical procedures were used to study the electronic behavior of dinaphthodiospyrol S isolated from D. kaki. Frontier molecular orbital (FMO) analysis was performed to understand the distribution of electronic density, highest occupied molecular orbital HOMO, lowest unoccupied molecular orbital LUMO, and energy gaps. The values of HOMO, LUMO, and energy gap were found to be -6.39, -3.51 and 2.88 eV respectively. The FMO results indicated the intramolecular charge transfer. Moreover, reactivity descriptors were also determined to confirm the stability of the compound. The molecular electrostatic potential (MEP) investigation was done to analyze the electrophilic and nucleophilic sites within a molecule. The oxygen atoms in the compound exhibited negative potential, indicating that they are favorable sites for electrophilic attacks. The results indicate its potential as a therapeutic agent for related disorders. Further studies are needed to investigate this compound's in vivo efficacy and safety as a potential drug candidate.

5.
Mol Cell Biochem ; 478(10): 2141-2171, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36637616

RESUMO

A trace element, known as a minor element, is a chemical element whose concentration is very low. They are divided into essential and non-essential classes. Numerous physiological and metabolic processes in both plants and animals require essential trace elements. These essential trace elements are so directly related to the metabolic and physiologic processes of the organism that either their excess or deficiency can result in severe bodily malfunction or, in the worst situations, death. Elements can be found in nature in various forms and are essential for the body to carry out its varied functions. Trace elements are crucial for biological, chemical, and molecular cell activity. Nutritional deficits can lead to weakened immunity, increased susceptibility to oral and systemic infections, delayed physical and mental development, and lower productivity. Trace element enzymes are involved in many biological and chemical processes. These compounds act as co-factors for a number of enzymes and serve as centers for stabilizing the structures of proteins and enzymes, allowing them to mediate crucial biological processes. Some trace elements control vital biological processes by attaching to molecules on the cell membrane's receptor site or altering the structure of the membrane to prevent specific molecules from entering the cell. Some trace elements are engaged in redox reactions. Trace elements have two purposes. They are required for the regular stability of cellular structures, but when lacking, they might activate alternate routes and induce disorders. Therefore, thoroughly understanding these trace elements is essential for maintaining optimal health and preventing disease.


Assuntos
Oligoelementos , Animais , Humanos
6.
Crit Rev Food Sci Nutr ; 63(3): 303-329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34254536

RESUMO

Alginates are linear polymers comprising 40% of the dry weight of algae possess various applications in food and biomedical industries. Alginate oligosaccharides (AOS), a degradation product of alginate, is now gaining much attention for their beneficial role in food, pharmaceutical and agricultural industries. Hence this review was aimed to compile the information on alginate and AOS (prepared from seaweeds) during 1994-2020. As per our knowledge, this is the first review on the potential use of alginate oligosaccharides in different fields. The alginate derivatives are grouped according to their applications. They are involved in the isolation process and show antimicrobial, antioxidant, anti-inflammatory, antihypertension, anticancer, and immunostimulatory properties. AOS also have significant applications in prebiotics, nutritional supplements, plant growth development and others products.


Assuntos
Alginatos , Alga Marinha , Alginatos/metabolismo , Oligossacarídeos/metabolismo , Antioxidantes , Suplementos Nutricionais
7.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37272499

RESUMO

Olive family (Oleaceae) contains several species among which Olea europaea L. is mostly used for production of olive oils. Various parts of olive tree are rich source of diverse bioactive compounds such as Apigenin, elenolic acid, Hydroxytyrosol, Ligstroside, Oleoside, Oleuropein, Oleuropein aglycone, Tyrosol, etc. Among these, oleuropein, a secoiridoid is predominantly found in olive leaves and young olive fruits of different species of Oleaceae family. Scientists have adopted numerous extraction methods (conventional & latest) to increase the yield of oleuropein. Among these techniques, maceration, soxhlet, microwave-assisted, ultrasonication, and supercritical fluid methods are most commonly employed for extraction of oleuropein. Evidently, this review emphasizes on various in-vitro and in-vivo studies focusing on nutraceutical properties of oleuropein. Available literature highlights the pharmaceutical potential of oleuropein against various diseases such as obesity, diabetes, cardiovascular complications, neurodegenerative diseases, cancer, inflammation, microbial infections, and oxidation. This review will benefit the scientific community as it narrates comprehensive literature regarding absorption, metabolism, bioavailability, extraction techniques, and nutraceutical perspectives associated with oleuropein.

8.
Crit Rev Food Sci Nutr ; 63(30): 10332-10350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35612470

RESUMO

Fruits contain enormous source of vitamins that provides energy to the human body. These are also affluent in essential and vital vitamins, minerals, fiber, and health-promoting components, which has led to an increase in fruit consumption in recent years. Though fruit consumption has expanded considerably in recent years, the use of synthetic chemicals to ripen or store fruits has been steadily increasing, resulting in postharvest deterioration. Alternatives to synthetic chemicals should be considered to control this problem. Instead of utilizing synthetic chemicals, this study suggests using natural plant products to control postharvest decay. The aim of this study indicates how natural plant products can be useful and effective to eliminate postharvest diseases rather than using synthetic chemicals. Several electronic databases were investigated as information sources, including Google Scholar, PubMed, Web of Science, Scopus, ScienceDirect, SpringerLink, Semantic Scholar, MEDLINE, and CNKI Scholar. The current review focused on the postharvest of fruits has become more and more necessary because of these vast demands of fruits. Pathogen-induced diseases are the main component and so the vast portion of fruits get wasted after harvest. Besides, it may occur harmful during harvesting and subsequent handling, storage, and marketing and after consumer purchasing and also causes for numerous endogenous and exogenous diseases via activating ROS, oxidative stress, lipid peroxidation, etc. However, pathogenicity can be halted by using postharvest originating natural fruits containing bioactive elements that may be responsible for the management of nutritional deficiency, inflammation, cancer, and so on. However, issues arising during the postharvest diseases must be controlled and resolved before releasing the horticultural commodities for commercialization. Therefore, the control of postharvest pathogens still depends on the use of synthetic fungicides; however, due to the problem of the development of the fungicide-resistant strains there is a good demand of public to eradicate the use of pesticides with the arrival of numerous diseases that are expanded in their intensity by the specific chemical product. By using of the organic or natural products for controlling postharvest diseases of fruits has become a mandatory step to take. In addition, antimicrobial packaging may have a greater impact on long-term food security by lowering the risk of pathogenicity and increasing the longevity of fruit shelf life. Taken together, natural chemicals as acetaldehyde, hexanal, eugenol, linalool, jasmonates, glucosinolates, essential oils, and many plant bioactive are reported for combating of the postharvest illnesses and guide to way of storage of fruits in this review.


Assuntos
Anti-Infecciosos , Fungicidas Industriais , Humanos , Conservação de Alimentos/métodos , Frutas , Vitaminas
9.
Phytother Res ; 37(6): 2644-2660, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37157920

RESUMO

Edible mushrooms are popular functional foods attributed to their rich nutritional bioactive constituent profile influencing cardiovascular function. Edible mushrooms are omnipresent in various prescribed Dietary Approaches to Stop Hypertension, Mediterranean diet, and fortified meal plans as they are rich in amino acids, dietary fiber, proteins, sterols, vitamins, and minerals. However, without an understanding of the influence of mushroom bioactive constituents, mechanism of action on heart and allergenicity, it is difficult to fully comprehend the role of mushrooms as dietary interventions in alleviating hypertension and other cardiovascular malfunctions. To accomplish this endeavor, we chose to review edible mushrooms and their bioactive constituents in ameliorating hypertension. Hypertension and cardiovascular diseases are interrelated and if the former is managed by dietary changes, it is postulated that overall heart health could also be improved. With a concise note on different edible varieties of mushrooms, a particular focus is presented on the antihypertensive potential of mushroom bioactive constituents, mode of action, absorption kinetics and bioavailability. Ergosterol, lovastatin, cordycepin, tocopherols, chitosan, ergothioneine, γ-aminobutyric acid, quercetin, and eritadenine are described as essential bioactives with hypotensive effects. Finally, safety concerns on allergens and limitations of consuming edible mushrooms with special reference to chemical toxins and their postulated metabolites are highlighted. It is opined that the present review will redirect toxicologists to further investigate mushroom bioactives and allergens, thereby influencing dietary interventions for heart health.


Assuntos
Agaricales , Doenças Cardiovasculares , Hipertensão , Humanos , Agaricales/química , Alimento Funcional , Hipertensão/tratamento farmacológico , Dieta
10.
Molecules ; 28(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050015

RESUMO

Titanium dioxide (TiO2) has been investigated for solar-energy-driven photoelectrical water splitting due to its suitable band gap, abundance, cost savings, environmental friendliness, and chemical stability. However, its poor conductivity, weak light absorption, and large indirect bandgap (3.2 eV) has limited its application in water splitting. In this study, we precisely targeted these limitations using first-principle techniques. TiO2 only absorbs near-ultraviolet radiation; therefore, the substitution (2.1%) of Ag, Fe, and Co in TiO2 significantly altered its physical properties and shifted the bandgap from the ultraviolet to the visible region. Cobalt (Co) substitution in TiO2 resulted in high absorption and photoconductivity and a low bandgap energy suitable for the reduction in water without the need for external energy. The calculated elastic properties of Co-doped TiO2 indicate the ductile nature of the material with a strong average bond strength. Co-doped TiO2 exhibited fewer microcracks with a mechanically stable composition.

11.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903316

RESUMO

Ovarian cancer represents a major health concern for the female population: there is no obvious cause, it is frequently misdiagnosed, and it is characterized by a poor prognosis. Additionally, patients are inclined to recurrences because of metastasis and poor treatment tolerance. Combining innovative therapeutic techniques with established approaches can aid in improving treatment outcomes. Because of their multi-target actions, long application history, and widespread availability, natural compounds have particular advantages in this connection. Thus, effective therapeutic alternatives with improved patient tolerance hopefully can be identified within the world of natural and nature-derived products. Moreover, natural compounds are generally perceived to have more limited adverse effects on healthy cells or tissues, suggesting their potential role as valid treatment alternatives. In general, the anticancer mechanisms of such molecules are connected to the reduction of cell proliferation and metastasis, autophagy stimulation and improved response to chemotherapeutics. This review aims at discussing the mechanistic insights and possible targets of natural compounds against ovarian cancer, from the perspective of medicinal chemists. In addition, an overview of the pharmacology of natural products studied to date for their potential application towards ovarian cancer models is presented. The chemical aspects as well as available bioactivity data are discussed and commented on, with particular attention to the underlying molecular mechanism(s).


Assuntos
Produtos Biológicos , Neoplasias Ovarianas , Feminino , Humanos , Produtos Biológicos/química , Proliferação de Células , Neoplasias Ovarianas/tratamento farmacológico
12.
Saudi Pharm J ; 31(12): 101868, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38033748

RESUMO

Objective: Traditionally, Olea ferruginea Royle (Oleaceae) has been used as a painkiller and antidiabetic in various ailments. To provide a scientific background to this folklore the current study was designed to anti-inflammatory and antidiabetic effects of one of the isolated compound from this plant. Methods: Ferruginan A was isolated from the ethyl acetate extract of Olea ferruginea bark. This isolated molecule was subjected to in-vitro anti-inflammatory and antidiabetic effects using HRBCs and glucose uptake tests. The compound was also tested for molecular docking and ADMET study. Results: Regarding the anti-inflammatory effect, the tested compound demonstrated a 69.82 % inhibition at a concentration of 100 µg/mL, while the Ferruginan A (100 µl/mL) increased the uptake of glucose (3.79-71.86 %) in the yeast cell. Similarly, the zone of inhibition values of Ferruginan A (24.98 mm) against Escherichia coli were found to be comparable to standard (Imipenem: 31.09 mm). The mechanism of antidiabetic and anti-inflammatory effects was explored by using docking simulations performed on four molecular targets related to diabetes and inflammation. The results showed that the isolated compound may act as an antidiabetic agent by inhibiting the 5' Adenosine monophosphate-activated protein kinase (AMPK). While it also showed inhibition of anti-inflammatory targets COX-1, COX-2, and Tumor necrosis factor alpha (TNF-α). The ADMET prediction study revealed that isolated compound possesses favorable ADMET profile. Conclusion: It was concluded that Ferruginan A might be a significant anti-inflammatory and antidiabetic molecule.

13.
Pharmacol Res ; 184: 106398, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988867

RESUMO

Abnormalities in the mitogen-activated protein kinase (MAPK) signaling pathway are a key contributor to the carcinogenesis process and have therefore been implicated in several aspects of tumorigenesis, including cell differentiation, proliferation, invasion, angiogenesis, apoptosis, and metastasis. This pathway offers multiple molecular targets that may be modulated for anticancer activity and is of great interest for several malignancies. Polyphenols from various dietary sources have been observed to interfere with certain aspects of this pathway and consequently play a substantial role in the development and progression of cancer by suppressing cell growth, inactivating carcinogens, blocking angiogenesis, causing cell death, and changing immunity. A good number of polyphenolic compounds have shown promising outcomes in numerous pieces of research and are currently being investigated clinically to treat cancer patients. The current study concentrates on the role of the MAPK pathway in the development and metastasis of cancer, with particular emphasis on dietary polyphenolic compounds that influence the different MAPK sub-pathways to obtain an anticancer effect. This study aims to convey an overview of the various aspects of the MAPK pathway in cancer development and invasion, as well as a review of the advances achieved in the development of polyphenols to modulate the MAPK signaling pathway for better treatment of cancer.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Neoplasias , Apoptose , Carcinogênese/metabolismo , Carcinógenos , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/tratamento farmacológico , Neovascularização Patológica , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Crit Rev Food Sci Nutr ; 62(25): 7072-7116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33840324

RESUMO

Marine organisms are considered a cache of biologically active metabolites with pharmaceutical, functional, and nutraceutical properties. Among these, marine bioactive peptides (MBAs) present in diverse marine species (fish, sponges, cyanobacteria, fungi, ascidians, seaweeds, & mollusks) have acquired attention owing to their broad-spectrum health-promoting benefits. Nowadays, scientists are keener exploring marine bioactive peptides precisely due to their unique structural and biological properties. These MBAs have reported ameliorating potential against different diseases like hypertension, diabetes, obesity, HIV, cancer, oxidation, and inflammation. Furthermore, MBAs isolated from various marine organisms may also have a beneficial role in the cosmetic, nutraceutical, and food industries. Few marine peptides and their derivative are approved for commercial use, while many MBAs are in various pre-clinical and clinical trials. This review mainly focuses on the diversity of marine bioactive peptides in marine organisms and their production procedures, such as chemical and enzymatic hydrolysis. Moreover, MBAs' therapeutic and biological potential has also been critically discussed herein, along with their status in drug discovery, pre-clinical and clinical trials.


Assuntos
Organismos Aquáticos , Peptídeos , Animais , Organismos Aquáticos/química , Descoberta de Drogas , Fungos , Humanos , Moluscos , Peptídeos/química
15.
Crit Rev Food Sci Nutr ; 62(26): 7282-7300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33905274

RESUMO

Many short-lived and highly reactive oxygen species, such as superoxide anion (O2-) and hydrogen peroxide (H2O2), are toxic or can create oxidative stress in cells, a response involved in the pathogenesis of numerous diseases depending on their concentration, location, and cellular conditions. Superoxide dismutase (SOD) activities as an endogenous and exogenous cell defense mechanism include the potential use in treating various diseases, improving the potential use in treating various diseases, and improving food-stuffs preparation dietary supplements human nutrition. Published work indicates that SOD regulates oxidative stress, lipid metabolism, inflammation, and oxidation in cells. It can prevent lipid peroxidation, the oxidation of low-density lipoprotein in macrophages, lipid droplets' formation, and the adhesion of inflammatory cells into endothelial monolayers. It also expresses antioxidant effects in numerous cancer-related processes. Additionally, different forms of SOD may also augment food processing and pharmaceutical applications, exhibit anticancer, antioxidant, and anti-inflammatory effects, and prevent arterial problems by protecting the proliferation of vascular smooth muscle cells. Many investigations in this review have reported the therapeutic ability and physiological importance of SOD. Because of their antioxidative effects, SODs are of great potential in the medicinal, cosmetic, food, farming and chemical industries. This review discusses the findings of human and animal studies that support the advantages of SOD enzyme regulations to reduce the formation of oxidative stress in various ways.


Assuntos
Peróxido de Hidrogênio , Superóxido Dismutase , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Superóxidos/farmacologia
16.
Crit Rev Food Sci Nutr ; 62(10): 2683-2706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33327732

RESUMO

Saffron (Crocus sativus L., family Iridaceae) is used traditionally for medicinal purpose in Chinese, Ayurvedic, Persian and Unani medicines. The bioactive constituents such as apocarotenoids, monoterpenoids, flavonoids, phenolic acids and phytosterols are widely investigated in experimental and clinical studies for a wide range of therapeutic effects, especially on the nervous system. Some of the active constituents of saffron have high bioavailability and bioaccessibility and ability to pass the blood-brain barrier. Multiple preclinical and clinical studies have supported neuroprotective, anxiolytic, antidepressant, learning and memory-enhancing effect of saffron and its bioactive constituents (safranal, crocin, and picrocrocin). Thus, this plant and its active compounds could be a beneficial medicinal food ingredient in the formation of drugs targeting nervous system disorders. This review focuses on phytochemistry, bioaccessibility, bioavailability, and bioactivity of phytochemicals in saffron. Furthermore, the therapeutic effect of saffron against different nervous system disorders has also been discussed in detail.


Assuntos
Crocus , Antidepressivos , Crocus/química , Flavonoides , Compostos Fitoquímicos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
17.
Crit Rev Food Sci Nutr ; 62(22): 6034-6054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33703960

RESUMO

Over the past decade, the gut microbiota has emerged as an important frontier in understanding the human body's homeostasis and the development of diseases. Gut flora in human beings regulates various metabolic functionalities, including enzymes, amino acid synthesis, bio-transformation of bile acid, fermentation of non-digestible carbohydrates (NDCs), generation of indoles and polyamines (PAs), and production of short-chain fatty acids (SCFAs). Among all the metabolites produced by gut microbiota, SCFAs, the final product of fermentation of dietary fibers by gut microbiota, receive lots of attention from scientists due to their pharmacological and physiological characteristics. However, the molecular mechanisms underlying the role of SCFAs in the interaction between diet, gut microbiota, and host energy metabolism is still needed in-depth research. This review highlights the recent biotechnological advances in applying SCFAs as important metabolites to treat various diseases and maintain colonic health.


Assuntos
Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Dieta , Fibras na Dieta , Metabolismo Energético/fisiologia , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos
18.
Crit Rev Food Sci Nutr ; 62(10): 2580-2605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33319597

RESUMO

Breast cancer is known as the most devastating cancer in the global female community and is considered as one of the severe health care burdens in both developed and developing countries. In many cases, breast cancer has shown resistance to chemotherapy, radiotherapy and hormonal therapy. Keeping in view these limitations, there is an urgent need to develop safe, readily available and effective breast anticancer treatments. Therefore, the scientists are keen in the extraction of plant-based phytochemicals (organosulfur compounds, betalains, capsaicinoids, terpenes, terpenoids, polyphenols, and flavonoids) and using them as breast anticancer agents. Results of numerous epidemiological investigations have revealed the promising role of phytochemicals in the prevention and treatment of breast cancer. The diverse classes of plant bioactive metabolites regulate different metabolic and molecular processes, which can delay the proliferation of cancers. These phytochemicals possess chemo-preventive properties as they down-regulate the expression of estrogen receptor-α, inhibit the proliferation of cancer cells, and cause cell cycle arrest by inducing apoptotic conditions in tumor cells. This review article discusses the potent role of various plant-based phytochemicals as potential therapeutic agents in the treatment or prevention of breast cancer along with the proposed mechanisms of action.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/farmacologia , Betalaínas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/prevenção & controle , Feminino , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Compostos Fitoquímicos/química
19.
Pestic Biochem Physiol ; 184: 105128, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715066

RESUMO

Many cases of insecticide resistance in insect pests give resulting no-cost strains that retain the resistance genes even in the absence of the toxic stressor. Malathion (rac-diethyl 2-[(dimethoxyphosphorothioyl)sulfanyl]succinate) has been widely used against the red flour beetle, Tribolium castaneum Herbst. in stored products although no longer used. Malathion specific resistance in this pest is long lasting and widely distributed. A malathion resistant strain was challenged with a range of stressors including starvation, hyperoxia, malathion and a pathogen to determine the antioxidant responses and changes to some lifecycle parameters. Adult life span of the malathion-specific resistant strain of T. castaneum was significantly shorter than that of the susceptible. Starvation and/or high oxygen reduced adult life span of both strains. Starving, with and without 100% oxygen, gave longer lifespan for the resistant strain, but for oxygen alone there was a small extension. Under oxygen the proportional survival of the resistant strain to the adult stage was significantly higher, for both larvae and pupae, than the susceptible. The resistant strain when stressed with malathion and oxygen significantly increased catalase activity, but the susceptible did not. The resistant strain stressed with Paranosema whitei infection had significantly higher survival compared to the susceptible, and with low mortality. The malathion resistant strain of T. castaneum showed greater vigour than the susceptible in oxidative stress situations and especially where stressors were combined. The induction of the antioxidant enzyme catalase could have helped the resistant strain to withstand oxidative stresses, including insecticidal and importantly those from pathogens. These adaptations, in the absence of insecticide, seem to support the increased immunity of the insecticide resistant host to pathogens seen in other insect species, such as mosquitoes. By increasing the responses to a range of stressors the resistant strain could be considered as having enhanced fitness, compared to the susceptible.


Assuntos
Inseticidas , Tribolium , Animais , Antioxidantes , Catalase , Inseticidas/farmacologia , Malation/farmacologia , Estresse Oxidativo , Oxigênio
20.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684311

RESUMO

Micromeria biflora, a traditional medicinal plant, is extensively used for treating various painful conditions, such as nose bleeds, wounds, and sinusitis. A phytochemical investigation of the chloroform fraction of Micromeria biflora led to the isolation of salicylalazine. Salicylalazine was assessed in vivo for analgesia, muscle relaxation, sedative, and anti-inflammatory properties, as well as in vitro for COX-1/2 inhibition activities. It was assessed against a hot plate-induced model at different doses. The muscle relaxant potential of salicylalazine was evaluated in traction and inclined screening models, while sedative properties were determined using an open-field model. The anti-inflammatory potential of salicylalazine was assessed in histamine and carrageenan-induced paw edema screening models. Salicylalazine exhibited significant analgesic potential in a dose-dependent manner. In both screening models, an excellent time-dependent muscle-relaxation effect was observed. Salicylalazine demonstrated excellent sedation at high doses. Its anti-inflammatory activity was determined through the initial and late phases of edema. It exhibited anticancer potential against NCI-H226, HepG2, A498, and MDR2780AD cell lines. In vitro, salicylalazine showed preferential COX-2 inhibition (over COX-1) with an SI value of 4.85. It was less effective in the initial phase, while, in the later phase, it demonstrated significant effects at 15 and 20 mg/kg doses compared with the negative control. Salicylalazine did not exhibit cytotoxicity in the MTT assay, preliminarily indicating its safety.


Assuntos
Lamiaceae , Extratos Vegetais , Analgésicos/uso terapêutico , Anti-Inflamatórios/química , Carragenina/efeitos adversos , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Humanos , Hipnóticos e Sedativos/uso terapêutico , Simulação de Acoplamento Molecular , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA