Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 189(5): 2338-47, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22837483

RESUMO

Programmed death receptor 1 (PD-1) is an important signaling molecule often involved in tumor-mediated suppression of activated immune cells. Binding of this receptor to its ligands, B7-H1 (PD-L1) and B7-DC (PD-L2), attenuates T cell activation, reduces IL-2 and IFN-γ secretion, decreases proliferation and cytotoxicity, and induces apoptosis. B7-DC-Ig is a recombinant protein that binds and targets PD-1. It is composed of an extracellular domain of murine B7-DC fused to the Fc portion of murine IgG2a. In this study, we demonstrate that B7-DC-Ig can enhance the therapeutic efficacy of vaccine when combined with cyclophosphamide. We show that this combination significantly enhances Ag-specific immune responses and leads to complete eradication of established tumors in 60% of mice and that this effect is CD8 dependent. We identified a novel mechanism by which B7-DC-Ig exerts its therapeutic effect that is distinctly different from direct blocking of the PD-L1-PD-1 interaction. In this study, we demonstrate that there are significant differences between levels and timing of surface PD-1 expression on different T cell subsets. We found that these differences play critical roles in anti-tumor immune effect exhibited by B7-DC-Ig through inhibiting proliferation of PD-1(high) CD4 T cells, leading to a significant decrease in the level of these cells, which are enriched for regulatory T cells, within the tumor. In addition, it also leads to a decrease in PD-1(high) CD8 T cells, tipping the balance toward nonexhausted functional PD-1(low) CD8 T cells. We believe that the PD-1 expression level on T cells is a crucial factor that needs to be considered when designing PD-1-targeting immune therapies.


Assuntos
Vacinas Anticâncer/imunologia , Receptor de Morte Celular Programada 1/fisiologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Evasão Tumoral/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/genética , Animais , Antígeno B7-H1 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Sistemas de Liberação de Medicamentos/métodos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/biossíntese , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
2.
Eur J Immunol ; 41(10): 2977-86, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21710477

RESUMO

Programmed death-1 receptor (PD-1) is expressed on T cells following TCR activation. Binding of this receptor to its cognate ligands, programmed death ligand (PDL)-1 and PDL-2, down-regulates signals by the TCR, promoting T-cell anergy and apoptosis, thus leading to immune suppression. Here, we find that using an anti-PD-1 antibody (CT-011) with Treg-cell depletion by low-dose cyclophosphamide (CPM), combined with a tumor vaccine, induces synergistic antigen-specific immune responses and reveals novel activities of each agent in this combination. This strategy led to complete regression of established tumors in a significant percentage of treated animals, with survival prolongation. We show for the first time that combining CT-011 and CPM significantly increases the number of vaccine-induced tumor-infiltrating CD8(+) T cells, with simultaneous decrease in infiltrating Treg cells. Interestingly, we find that CT-011 prolongs Treg-cell inhibition induced by CPM, leading to a sustainable significant synergistic decrease of splenic and tumor-infiltrated Treg cells. Surprisingly, we find that the anti-tumor effect elicited by the combination of CT-011 and CPM is dependent on both CD8(+) and CD4(+) T-cell responses, although the antigen we used is a class I MHC-restricted peptide. Thus, we describe a novel and effective therapeutic approach by combining multiple strategies to target several tumor-mediated immune inhibitory mechanisms.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Antígeno B7-H1/imunologia , Ciclofosfamida/farmacologia , Neoplasias Experimentais/terapia , Proteína 2 Ligante de Morte Celular Programada 1/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Apoptose , Antígeno B7-H1/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Ciclofosfamida/administração & dosagem , Feminino , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Proteínas E7 de Papillomavirus/administração & dosagem , Proteínas E7 de Papillomavirus/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
3.
Proc Natl Acad Sci U S A ; 105(25): 8591-6, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18562278

RESUMO

It has been proposed that iron-sulfur [Fe-S] clusters destined for the maturation of [Fe-S] proteins can be preassembled on a molecular scaffold designated IscU. In the present article, it is shown that production of the intact Azotobacter vinelandii [Fe-S] cluster biosynthetic machinery at levels exceeding the amount required for cellular maturation of [Fe-S] proteins results in the accumulation of: (i) apo-IscU, (ii) an oxygen-labile [2Fe-2S] cluster-loaded form of IscU, and (iii) IscU complexed with the S-delivery protein, IscS. It is suggested that these species represent different stages of the [Fe-S] cluster assembly process. Substitution of the IscU Asp(39) residue by Ala results in the in vivo trapping of a stoichiometric, noncovalent, nondissociating IscU-IscS complex that contains an oxygen-resistant [Fe-S] species. In aggregate, these results validate the scaffold hypothesis for [Fe-S] cluster assembly and indicate that in vivo [Fe-S] cluster formation is a dynamic process that involves the reversible interaction of IscU and IscS.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Azotobacter vinelandii/metabolismo , Liases de Carbono-Enxofre/metabolismo , Cinética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
4.
J Bacteriol ; 191(14): 4534-45, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19429624

RESUMO

Azotobacter vinelandii is a soil bacterium related to the Pseudomonas genus that fixes nitrogen under aerobic conditions while simultaneously protecting nitrogenase from oxygen damage. In response to carbon availability, this organism undergoes a simple differentiation process to form cysts that are resistant to drought and other physical and chemical agents. Here we report the complete genome sequence of A. vinelandii DJ, which has a single circular genome of 5,365,318 bp. In order to reconcile an obligate aerobic lifestyle with exquisitely oxygen-sensitive processes, A. vinelandii is specialized in terms of its complement of respiratory proteins. It is able to produce alginate, a polymer that further protects the organism from excess exogenous oxygen, and it has multiple duplications of alginate modification genes, which may alter alginate composition in response to oxygen availability. The genome analysis identified the chromosomal locations of the genes coding for the three known oxygen-sensitive nitrogenases, as well as genes coding for other oxygen-sensitive enzymes, such as carbon monoxide dehydrogenase and formate dehydrogenase. These findings offer new prospects for the wider application of A. vinelandii as a host for the production and characterization of oxygen-sensitive proteins.


Assuntos
Azotobacter vinelandii/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Proteínas de Bactérias/genética , Sequência de Bases , Metabolismo/genética , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA