Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 161(4)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39056385

RESUMO

The present work provides a systematic study on the influence of sample properties and experimental conditions on the reliable accessibility of Fick or mutual diffusion coefficients D11 and thermal diffusivities a in binary liquid mixtures using the shadowgraph method. For this, mixtures with varying magnitudes of the Soret coefficient ST and their optical contrast factors were studied at a temperature of 298.15 K and pressures between (0.1 and 0.65) MPa with varying magnitudes and orientations of the applied temperature and concentration gradients ∇T and ∇c. Experimental signals obtained in these investigations were analyzed with respect to the intensities of the signal contributions from non-equilibrium fluctuations (NEFs) in concentration and temperature, and the reliability of the determined D11 and a data was assessed by comparison to literature data. Larger signal intensities from NEFs and, therefore, a more reliable determination of diffusivities were given for sufficiently large magnitudes of ST, the optical contrast factors, and the applied ∇T and ∇c. At very small fluid layer thicknesses L ≤ 0.30 mm, the associated reduction of signal statistics outweighing the expected increase of signal intensities at larger magnitudes of ∇T and ∇c as well as the influence of confinement imposed limitations for the determination of diffusivities in some cases. Furthermore, an influence of the mixture composition on signal intensities from concentration-NEFs was identified, where too small mole fractions of one component can hinder the determination of D11 in mixtures with small magnitudes of the optical contrast factor (∂n/∂c)T,p.

2.
J Chem Eng Data ; 64(9)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33654329

RESUMO

In the present study, the simultaneous and accurate determination of liquid viscosity and surface tension of the n-alkanes n-hexane (n-C6H14), n-octane (n-C8H18), n-decane (n-C10H22), and n-hexadecane (n-C16H34) by surface light scattering (SLS) in thermodynamic equilibrium is demonstrated. Measurements have been performed over a wide temperature range from 283.15 K up to 473.15 K for n-C6H14, 523.15 K for n-C8H18, and 573.15 K for n-C10H22 as well as n-C16H34. The liquid dynamic viscosity and surface tension data with average total measurement uncertainties (k = 2) of (2.0 and 1.7) % agree with the available literature and contribute to a new database at high temperatures. Over the entire temperature range, a Vogel-type equation for the dynamic viscosity and a modified van der Waals equation for the surface tension represent the measured data for the four n-alkanes within experimental uncertainties. By also considering our former SLS data for n-dodecane (n-C12H26) and n-octacosane (n-C28H58), empirical models for the liquid viscosity and surface tension of n-alkanes were developed as a function of temperature and carbon number covering values between 6 and 28. Agreement between these models and reference correlations for further selected n-alkanes which were not included in the development procedure was found.

3.
Langmuir ; 26(8): 5971-5, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20345184

RESUMO

The present work provides new information on the characteristics of ion implanted metallic surfaces responsible for the adjustment of stable dropwise condensation (DWC) of steam. The results are based on condensation experiments and surface analyses via contact angle (CA) and surface free energy (SFE) measurements as well as scanning electron microscopy (SEM). For studying possible influences of the base material and the implanted ion species, commercially pure titanium grade 1, aluminum alloy Al 6951, and stainless steel AISI 321 were treated with N(+), C(+), O(+), or Ar(+) using ion beam implantation technology. The studies suggest that chemically inhomogeneous surfaces are instrumental in inducing DWC. As this inhomogeneity is apparently caused by particulate precipitates bonded to the metal surface, the resulting nanoscale surface roughness may also influence the condensation form. On such surfaces nucleation mechanisms seem to be capable of maintaining DWC even when CA and SFE measurements indicate increased wettability. The precipitates are probably formed due to the supersaturation of ion implanted metal surfaces with doping elements. For high-alloyed materials like AISI 321 or Hastelloy C-276, oxidation stimulated by the condensation process obviously tends to produce similar surfaces suitable for DWC.

4.
J Phys Chem B ; 124(20): 4146-4163, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32315527

RESUMO

This work contributes to the characterization of long linear and branched alkanes and alcohols via the determination of their thermophysical properties up to temperatures of 573.15 K. For this, experimental techniques including surface light scattering (SLS) and molecular dynamics (MD) simulations were used under equilibrium conditions to analyze the influences of chain length, branching, and hydroxylation on liquid density, liquid viscosity, and surface tension. For probing these effects, 12 pure model systems given by the linear alkanes n-dodecane, n-hexadecane, n-octacosane, n-triacontane, and n-tetracontane, the linear alcohols 1-dodecanol, 1-hexadecanol, and 1,12-dodecanediol, the branched alkanes 2,2,4,4,6,8,8-heptamethylnonane (HMN) and 2,6,10,15,19,23-hexamethyltetracosane (squalane), and the branched alcohols 2-butyl-1-octanol and 2-hexyl-1-decanol were investigated at or close to saturation conditions at temperatures between 298.15 and 573.15 K. Based on the experimental results for the liquid densities, liquid viscosities, and surface tensions with average expanded uncertainties (k = 2) of 0.061, 2.1, and 2.6%, respectively, the performance of the three commonly employed force fields (FFs) TraPPE, MARTINI, and L-OPLS was assessed in MD simulations. To improve the simulation results for the best-performing all-atom L-OPLS FF at larger temperatures, a modified version was suggested. This incorporates a temperature dependence for the energy parameters of the Lennard-Jones potential obtained by calibrating only against the experimental liquid density data of n-dodecane. By transferring this approach to all other systems studied, the modified L-OPLS FF shows now a distinctly better representation of the equilibrium and transport properties of the long alkanes and alcohols, especially at high temperatures.

5.
J Phys Chem B ; 124(12): 2482-2494, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32105484

RESUMO

This work contributes to an improved understanding of the fluid-phase behavior and diffusion processes in mixtures of 1-hexanol and carbon dioxide (CO2) at temperatures around the upper critical end point (UCEP) of the system. Raman spectroscopy and dynamic light scattering were used to determine the composition at saturation conditions as well as Fick and thermal diffusivities. An acceleration of the Fick diffusive process up to CO2 mole fractions of about 0.2 was found, followed by a strong slowing-down approaching vapor-liquid-liquid equilibrium or critical conditions. The acceleration of the Fick diffusive process vanished at temperatures much higher than the UCEP. Experimental Fick diffusivity data were compared with predictions from equilibrium molecular dynamics simulations and excess Gibbs energy calculations using interaction parameters from the literature. Both theoretical methods were not able to predict that the thermodynamic factor is equal to zero at the spinodal composition, stressing the need for new methodologies under such conditions. Thus, new sets of temperature-dependent interaction parameters were developed for the nonrandom two-liquid model, which improve the prediction of the Fick diffusion coefficient considerably. The link between the Fick diffusion coefficient and the nonrandomness of the liquid phases is also discussed.

6.
J Phys Chem B ; 123(44): 9491-9502, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31592668

RESUMO

Polarized dynamic light scattering (DLS) gives access to orientation-averaged translational and rotational diffusion coefficients of anisotropic particles dispersed in fluids in a single experiment. As the combination of both diffusivities contains information on the morphology of the particles, their simultaneous and accurate measurement for the same sample and thermodynamic state is beneficial for particle characterization. For nontransparent model suspensions of gold nanorods in water and water-glycerol mixtures, a scattering geometry in reflection direction was realized, which minimizes multiple scattering and allows using low laser powers to avoid laser heating. Furthermore, a heterodyne detection scheme was guaranteed by superimposing much stronger reference light to the scattered light. This ensures an unambiguous data evaluation and reduces the uncertainties for the rotational and the translational diffusivity, where the latter is accessible with smaller uncertainty. For the water-based suspensions, both diffusivities agree well with the stick hydrodynamic theory for rods and show an Andrade-type behavior in the studied temperature range from 271 to 323 K. The measured results for both diffusivities, particularly for the rotational diffusivity, indicate a breakdown of the stick boundary conditions for dynamic viscosities larger than 4 mPa·s.

7.
J Phys Chem B ; 123(41): 8777-8790, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31536354

RESUMO

The influence of the strength of intermolecular interactions on mass diffusive processes remains poorly understood for mixtures of associative liquids with dissolved gases. For contributing to a fundamental understanding of the interplay between liquid structures and mass diffusivities in such systems, dynamic light scattering, Raman spectroscopy, and molecular dynamics simulations were used in this work. As model systems, binary mixtures consisting of the gases hydrogen, helium, nitrogen, carbon monoxide, or carbon dioxide dissolved in ethanol, 1-hexanol, or 1-decanol were selected. Experiments and simulations were performed at macroscopic thermodynamic equilibrium close to infinite dilution of solute for temperatures between 303 and 423 K. The Fick diffusion coefficients and self-diffusivities of the gas solutes increase with increasing temperature, decreasing alkyl chain length of the 1-alcohols, and decreasing molar mass of the solutes except for helium and hydrogen showing the opposite behavior. The analysis of the liquid structure of the mixtures showed that the fraction of hydrogen-bonded alcohol molecules decreases with increasing alkyl chain length and temperature. From the obtained structure-property relationships, a new correlation was developed to predict mass diffusivities in binary mixtures consisting of n-alkanes or 1-alcohols with dissolved gases close to infinite dilution within 10% on average.

8.
J Phys Chem B ; 122(28): 7122-7133, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29889520

RESUMO

This study contributes to a fundamental understanding of how the liquid structure in a model system consisting of weakly associative n-hexane ( n-C6H14) and carbon dioxide (CO2) influences the Fickian diffusion process. For this, the benefits of light scattering experiments and molecular dynamics (MD) simulations at macroscopic thermodynamic equilibrium were combined synergistically. Our reference Fickian diffusivities measured by dynamic light scattering (DLS) revealed an unusual trend with increasing CO2 mole fractions up to about 70 mol %, which agrees with our simulation results. The molecular impacts on the Fickian diffusion were analyzed by MD simulations, where kinetic contributions related to the Maxwell-Stefan (MS) diffusivity and structural contributions quantified by the thermodynamic factor were studied separately. Both the MS diffusivity and the thermodynamic factor indicate the deceleration of Fickian diffusion compared to an ideal mixture behavior. Computed radial distribution functions as well as a significant blue-shift of the CH stretching modes of n-C6H14 identified by Raman spectroscopy show that the slowing down of the diffusion is caused by a structural organization in the binary mixtures over a broad concentration range in the form of self-associated n-C6H14 and CO2 domains. These networks start to form close to the infinite dilution limits and seem to have their largest extent at a solute-solvent transition point at about 70 mol % CO2. The current results not only improve the general understanding of mass diffusion in liquids but also serve to develop sound prediction models for Fick diffusivities.

9.
J Phys Chem B ; 122(12): 3163-3175, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29485876

RESUMO

In the present study, dynamic light scattering (DLS) experiments and molecular dynamics (MD) simulations were used for the investigation of the molecular diffusion in binary mixtures of liquids with dissolved gases at macroscopic thermodynamic equilibrium. Model systems based on the n-alkane n-hexane or n-decane with dissolved hydrogen, helium, nitrogen, or carbon monoxide were studied at temperatures between 303 and 423 K and at gas mole fractions below 0.06. With DLS, the relaxation behavior of microscopic equilibrium fluctuations in concentration and temperature is analyzed to determine simultaneously mutual and thermal diffusivity in an absolute way. The present measurements document that even for mole gas fractions of 0.007 and Lewis numbers close to 1, reliable mutual diffusivities with an average expanded uncertainty ( k = 2) of 13% can be obtained. By use of suitable molecular models for the mixture components, the self-diffusion coefficient of the gases was determined by MD simulations with an averaged expanded uncertainty ( k = 2) of 7%. The DLS experiments showed that the thermal diffusivity of the studied systems is not affected by the dissolved gas and agrees with the reference data for the pure n-alkanes. In agreement with theory, mutual diffusivities and self-diffusivities were found to be equal mostly within combined uncertainties at conditions approaching infinite dilution of the gas. Our DLS and MD results, representing the first available data for the present systems, reveal distinctly larger mass diffusivities for mixtures containing hydrogen or helium compared to mixtures containing nitrogen or carbon monoxide. On the basis of the broad range of mass diffusivities of the studied gas-liquid systems covering about 2 orders of magnitude from about 10-9 to 10-7 m2·s-1, effects of the solvent and solute properties on the temperature-dependent mass diffusivities are discussed. This contributed to the development of a simple semiempirical correlation for the mass diffusivity of the studied gases dissolved in n-alkanes of varying chain length at infinite dilution as a function of temperature. The generalized expression requiring only information on the kinematic viscosity and molar mass of the pure solvent as well as the molar mass and acentric factor of the solute represents the database from this work and further literature with an absolute average deviation of about 11%.

10.
J Phys Chem B ; 121(16): 4145-4157, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28388084

RESUMO

Thermophysical properties of low-viscosity ionic liquids (ILs) based on the tetracyanoborate ([B(CN)4]-) anion carrying a homologous series of 1-alkyl-3-methylimidazolium ([AMIM]+) cations [EMIM]+ (ethyl), [BMIM]+ (butyl), [HMIM]+ (hexyl), [OMIM]+ (octyl), and [DMIM]+ (decyl) were investigated by experimental methods and molecular dynamics (MD) simulations at atmospheric pressure and various temperatures. Spectroscopic methods based on nuclear magnetic resonance and surface light scattering were applied to measure the ion self-diffusion coefficients and dynamic viscosity, respectively. In terms of MD simulations, a nonpolarizable molecular model for [EMIM][B(CN)4] developed by optimization to experimental data was transferred to the other homologous ILs. For the appropriate description of the inter- and intramolecular interactions, precise and approximate force fields (FFs) were tested regarding their transferability within the homologous IL series, aiming at reducing the computational effort in molecular simulations. It is shown that at comparable simulated and experimental densities, the calculated and measured data for viscosity and self-diffusion coefficients of the ILs agree well mostly within combined uncertainties, but deviate stronger for longer-chained ILs using an overly coarse FF model. For the [B(CN)4]--based ILs studied, a comparison with literature data, the influence of varying alkyl chain length in the cation on their structural and thermophysical properties, and a correlation between self-diffusivity and viscosity are discussed.

11.
J Phys Chem B ; 121(47): 10665-10673, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29091450

RESUMO

In this study, we demonstrate the ability of polarization-difference Raman spectroscopy (PDRS) to detect dissolved free water molecules in a n-octacosane (n-C28H58) liquid-rich phase, and thus to determine its solubility, at temperatures and pressures relevant to the Fischer-Tropsch synthesis. Our results for the pure alkane reveal thermal decomposition above a temperature of 500 K as well as an increase of gauche conformers of the alkane chains with an increase in temperature. For binary homogeneous mixtures, raw spectra obtained from two different polarization scattering geometries did not show a relevant signal in the OH stretching frequency range. In contrast, isotropic spectra obtained from the PDRS technique reveal a narrow and tiny peak associated with the dangling OH bonds. Over the complete range of temperatures and pressures, no signature of hydrogen-bonded water molecules was observed in the isotropic Raman scattering intensities. A thorough investigation covering a large range of temperatures and pressures using PDRS signals showed that the higher the fraction of gauche conformers of hydrocarbon, the higher the solubility of water. The proportion of gauche and trans conformers was found to be water-concentration-independent, and the intensity of the OH-dangling peak increased linearly with increasing the vapor partial pressure of water. Therefore, we established a relation between a relevant intensity ratio and the concentration of water obtained from SAFT calculations. Contrary to the results from relevant literature, the calibration factor was found to be temperature-independent between 424 and 572 K. The isotropic Raman scattering intensities are corrected in order to provide a better representation of the vibrational density of states. The influence of correction of the isotropic scattering intensities on the solubility measurements as well as on the analysis of the molecular arrangement is discussed.

12.
J Phys Chem B ; 121(48): 10950-10956, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29125767

RESUMO

For the first time, we demonstrate that it is possible to simultaneously analyze microscopic fluctuations at the surface and in the bulk of a binary liquid mixture by dynamic light scattering in macroscopic thermodynamic equilibrium. For a model system containing n-octacosane and ethanol, three individual signals distinguishable in the time-resolved analysis of the scattered light intensity appear on different time scales. One oscillatory signal from surface fluctuations at the vapor-liquid interface in the short-time range and two exponential Rayleigh signals from fluctuations in temperature and concentration in the bulk of fluid in the long-time range could be associated with hydrodynamic modes. This microscopic information allows for a simultaneous determination of the macroscopic properties interfacial tension, kinematic viscosity, thermal diffusivity, and mutual diffusivity within a single experimental run. The presented approach represents a worthwhile strategy, for example, in the context of sensor development for an effective multiproperty determination of fluid systems.

13.
J Phys Chem B ; 120(41): 10808-10823, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27676135

RESUMO

Theoretical approaches suggest that dynamic light scattering (DLS) signals from low-molecular-weight ternary mixtures are governed by fluctuations in temperature as well as two individual contributions from fluctuations in concentration that are related to the eigenvalues of the Fick diffusion matrix. Until now, this could not be proven experimentally in a conclusive way. In the present study, a detailed analysis of DLS signals in ternary mixtures consisting of n-dodecane (n-C12H26) and n-octacosane (n-C28H58) with dissolved hydrogen (H2), carbon monoxide (CO), or water (H2O) as well as of n-C12H26 or n-C28H58 with dissolved H2 and CO is given for temperatures up to 523 K and pressures up to 4.1 MPa. Thermal diffusivities of pure n-C12H26 and n-C28H58 as well as thermal and mutual diffusivities of their binary mixtures being the basis for the ternary mixtures with dissolved gas were studied for comparison purposes. For the investigated ternary mixtures, three individual signals could be distinguished in the time-resolved analysis of scattered light intensity by using photon correlation spectroscopy (PCS). For the first time, it could be evidenced that these signals are clearly associated with hydrodynamic modes. In most cases, the fastest mode observable for ternary mixtures is associated with the thermal diffusivity. The two further modes obviously related to the molecular mass transport are observable on different time scales and comparable to the modes associated with the concentration fluctuations in the respective binary mixtures. Comparison of the experimental data with results from molecular dynamics simulations revealed very good agreement.

14.
J Phys Chem B ; 119(27): 8583-92, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26075680

RESUMO

Ionic liquids (ILs) are possible working fluids for the separation of carbon dioxide (CO2) from flue gases. For evaluating their performance in such processes, reliable mutual-diffusivity data are required for mixtures of ILs with relevant flue gas components. In the present study, dynamic light scattering (DLS) and molecular dynamics (MD) simulations were used for the investigation of the molecular diffusion in binary mixtures of the IL 1-ethyl-3-methylimidazolium tetracyanoborate ([EMIM][B(CN)4]) with the dissolved gases carbon dioxide, nitrogen, carbon monoxide, hydrogen, methane, oxygen, and hydrogen sulfide at temperatures from 298.15 to 363.15 K and pressures up to 63 bar. At conditions approaching infinite dilution of a gas, the Fick mutual diffusivity of the mixture measured by DLS and the self-diffusivity of the corresponding gas calculated by MD simulations match, which could be generally found within combined uncertainties. The obtained diffusivities are in agreement with literature data for the same or comparable systems as well as with the general trend of increasing diffusivities for decreasing IL viscosities. The DLS and MD results reveal distinctly larger molecular diffusivities for [EMIM][B(CN)4]-hydrogen mixtures compared to mixtures with all other gases. This behavior results in the failure of an empirical correlation with the molar volumes of the gases at their normal boiling points. The DLS experiments also showed that there is no noticeable influence of the dissolved gas and temperature on the thermal diffusivity of the studied systems.

16.
J Phys Chem B ; 118(17): 4636-46, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24697143

RESUMO

Ionic liquids (ILs) are promising solvents for gas separation processes such as carbon dioxide (CO2) capture from flue gases. For the design of corresponding processes and apparatus, thermophysical properties of ILs containing dissolved gases are required. In the present study, it is demonstrated that with a single optical setup, mutual and thermal diffusivities as well as refractive indices can be measured quasi-simultaneously for such mixtures. Dynamic light scattering (DLS) from bulk fluids was applied to determine mutual and thermal diffusivities for mixtures of 1-butyl-3-methylimidazolium tricyanomethanide ([BMIM][C(CN)3]) or 1-butyl-3-methylimidazolium tetracyanoborate ([BMIM][B(CN)4]) with dissolved CO2 at temperatures from 303.15 to 333.15 K and pressures between 2 and 26 bar in macroscopic thermodynamic equilibrium. Good agreement with literature data and only slight differences between the diffusivities measured for the two systems at the same temperature and comparable mole fractions of CO2 were found. Increasing mutual diffusivities with increasing mole fractions of CO2 are consistent with decreasing viscosities reported for other IL-CO2 mixtures in the literature and can be attributed to weakening of molecular interactions by the dissolved gas. For the conditions studied, no dependence of the thermal diffusivity on the temperature or the mole fraction of CO2 could be found.


Assuntos
Dióxido de Carbono/química , Imidazóis/química , Líquidos Iônicos/química , Luz , Nitrilas/química , Espalhamento de Radiação , Temperatura , Difusão
17.
J Phys Chem B ; 118(14): 3981-90, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24650031

RESUMO

It is demonstrated that thermal and mutual diffusivities of binary mixtures of n-octacosane (n-C28H58) with carbon monoxide (CO), hydrogen (H2), and water (H2O) are simultaneously accessible by dynamic light scattering (DLS). As the light-scattering signals originating from thermal and concentration fluctuations appear in similar time scales, different data evaluation strategies were tested to achieve minimum uncertainties in the resulting transport properties. To test the agreement of the respective theoretical model with the DLS signals in the regression, an improved multifit procedure is introduced. With the selected data evaluation strategy, uncertainties of 4 to 15% and 4 to 30% in the thermal and mutual diffusivities, respectively, could be obtained for the binary mixtures. The mutual diffusivities for the mixtures measured at temperatures ranging from 398 to 523 K and pressures of 5 to 30 bar at saturation conditions are in good agreement with molecular dynamics simulations and data from the literature.

18.
J Phys Chem B ; 117(8): 2429-37, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23343565

RESUMO

Mutual diffusivities for binary mixtures of the ionic liquids (ILs) [EMIM][N(CN)2] (1-ethyl-3-methylimidazolium dicyanimide), [EMIM][NTf2] (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), and [HMIM][NTf2] (1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) with acetone and ethanol were studied in dependence on composition in the temperature range from 283.15 to 323.15 K, applying dynamic light scattering (DLS). The influence of experimental parameters on the achievable uncertainties was analyzed to ensure the acquisition of accurate data in adequate measurement times. For all probed systems, increasing binary diffusion coefficients were found for increasing temperatures. The systematic variation of anion and cation of the investigated ILs as well as a comparison with the literature data demonstrates the considerable influence of different ions on the resulting binary diffusion coefficients. Mutual diffusivities were found to be lower for the mixtures with ethanol than for those with acetone, which could be related to the formation of hydrogen bonds between ethanol and the ions. Most of the investigated IL solvent mixtures show increasing binary diffusion coefficients with increasing solvent concentration. For the mixtures of [EMIM][NTf2] with ethanol, however, a minimum of the mutual diffusivities was found in the ethanol mole fraction range from 0.7 to 0.8, which may hint at the vicinity of a critical demixing point. The viscosity of the pure ILs turned out to be no reliable indicator for the mutual diffusivity in mixtures with the same solvent.

19.
J Phys Chem B ; 117(28): 8512-23, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23789624

RESUMO

In the present study, the thermophysical properties of the tetracyanoborate-based ionic liquids (ILs) 1-ethyl-3-methylimidazolium tetracyanoborate ([EMIM][B(CN)4]) and 1-hexyl-3-methylimidazolium tetracyanoborate ([HMIM][B(CN)4]) obtained by both experimental methods and molecular dynamics (MD) simulations are presented. Conventional experimental techniques were applied for the determination of refractive index, density, interfacial tension, and self-diffusion coefficients for [HMIM][B(CN)4] at atmospheric pressure in the temperature range from 283.15 to 363.15 K. In addition, surface light scattering (SLS) experiments provided accurate viscosity and interfacial tension data. As no complete molecular parametrization was available for the MD simulations of [HMIM][B(CN)4], our recently developed united-atom force field for [EMIM][B(CN)4] was partially transferred to the homologous IL [HMIM][B(CN)4]. Deviations between our simulated and experimental data for the equilibrium properties are less than ±0.3% in the case of density and less than ±8% in the case of interfacial tension for both ILs. Furthermore, the calculated and measured data for the transport properties viscosity and self-diffusion coefficient are in good agreement, with deviations of less than ±30% over the whole temperature range. In addition to a comparison with the literature, the influence of varying cation chain length on thermophysical properties of [EMIM][B(CN)4] and [HMIM][B(CN)4] is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA