Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 73(3): 448-458, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38123984

RESUMO

OBJECTIVE: Patients with Crohn's disease (CD) exhibit great heterogeneity in disease presentation and treatment responses, where distinct gut bacteria and immune interactions may play part in the yet unresolved disease aetiology. Given the role of antibodies in the barrier defence against microbes, we hypothesised that gut bacterial antibody-coating patterns may influence underlying disease-mediated processes. DESIGN: Absolute and relative single and multicoating of gut bacteria with IgA, IgG1, IgG2, IgG3 and IgG4 in patients with CD and healthy controls were characterised and compared with disease activity. IgG2-coated and non-coated taxa from patients with severe CD were identified, profiled for pathogenic characteristics and monitored for enrichment during active disease across cohorts. RESULTS: Patients with severe CD exhibited higher gut bacterial IgG2-coating. Supervised clustering identified 25 bacteria to be enriched in CD patients with high IgG2-coating. Sorting, sequencing and in silico-based assessments of the virulent potential of IgG2-coated and bulk stool bacteria were performed to evaluate the nature and pathogenicity of IgG2-coated and non-coated bacteria. The analyses demonstrated IgG2-coating of both known pathogenic and non-pathogenic bacteria that co-occurred with two non-coated pathobionts, Campylobacter and Mannheimia. The two non-coated pathobionts exhibited low prevalence, rarely coincided and were strongly enriched during disease flares in patients with CD across independent and geographically distant cohorts. CONCLUSION: Distinct gut bacterial IgG2-coating was demonstrated in patients with severe CD and during disease flares. Co-occurrence of non-coated pathobionts with IgG2-coated bacteria points to an uncontrolled inflammatory condition in severe CD mediated via escape from antibody coating by two gut pathobionts.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/patologia , Bactérias , Anticorpos Antibacterianos , Imunoglobulina G
2.
BMC Microbiol ; 21(1): 276, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635060

RESUMO

Compared to the huge microbial diversity in most mammals, human gut microbiomes have lost diversity while becoming specialized for animal-based diets - especially compared to chimps, their genetically closest ancestors. The lowered microbial diversity within the gut of westernized populations has also been associated with different kinds of chronic inflammatory diseases in humans. To further deepen our knowledge on phylogenetic and ecologic impacts on human health and fitness, we established the herein presented biobank as well as its comprehensive microbiota analysis. In total, 368 stool samples from 38 different animal species, including Homo sapiens, belonging to four diverse mammalian orders were collected at seven different locations and analyzed by 16S rRNA gene amplicon sequencing. Comprehensive data analysis was performed to (i) determine the overall impact of host phylogeny vs. diet, location, and ecology and to (ii) examine the general pattern of fecal bacterial diversity across captive mammals and humans.By using a controlled study design with captive mammals we could verify that host phylogeny is the most dominant driver of mammalian gut microbiota composition. However, the effect of ecology appears to be able to overcome host phylogeny and should therefore be studied in more detail in future studies. Most importantly, our study could observe a remarkable decrease of Spirochaetes and Prevotella in westernized humans and platyrrhines, which is probably not only due to diet, but also to the social behavior and structure in these communities.Our study highlights the importance of phylogenetic relationship and ecology within the evolution of mammalian fecal microbiota composition. Particularly, the observed decrease of Spirochaetes and Prevotella in westernized communities might be associated to lifestyle dependent rapid evolutionary changes, potentially involved in the establishment of dysbiotic microbiomes, which promote the etiology of chronic diseases.


Assuntos
Ecossistema , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Prevotella/fisiologia , Spirochaetales/fisiologia , População Urbana , Bactérias/classificação , Bactérias/genética , Biodiversidade , Dieta , Humanos , Filogenia , RNA Ribossômico 16S/genética
3.
BMC Microbiol ; 21(1): 162, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078289

RESUMO

BACKGROUND: Human well-being has been linked to the composition and functional capacity of the intestinal microbiota. As regular exercise is known to improve human health, it is not surprising that exercise was previously described to positively modulate the gut microbiota, too. However, most previous studies mainly focused on either elite athletes or animal models. Thus, we conducted a randomised intervention study that focused on the effects of different types of training (endurance and strength) in previously physically inactive, healthy adults in comparison to controls that did not perform regular exercise. Overall study duration was ten weeks including six weeks of intervention period. In addition to 16S rRNA gene amplicon sequencing of longitudinally sampled faecal material of participants (six time points), detailed body composition measurements and analysis of blood samples (at baseline and after the intervention) were performed to obtain overall physiological changes within the intervention period. Activity tracker devices (wrist-band wearables) provided activity status and sleeping patterns of participants as well as exercise intensity and heart measurements. RESULTS: Different biometric responses between endurance and strength activities were identified, such as a significant increase of lymphocytes and decrease of mean corpuscular haemoglobin concentration (MCHC) only within the strength intervention group. In the endurance group, we observed a significant reduction in hip circumference and an increase in physical working capacity (PWC). Though a large variation of microbiota changes were observed between individuals of the same group, we did not find specific collective alterations in the endurance nor the strength groups, arguing for microbiome variations specific to individuals, and therefore, were not captured in our analysis. CONCLUSIONS: We could show that different types of exercise have distinct but moderate effects on the overall physiology of humans and very distinct microbial changes in the gut. The observed overall changes during the intervention highlight the importance of physical activity on well-being. Future studies should investigate the effect of exercise on a longer timescale, investigate different training intensities and consider high-resolution shotgun metagenomics technology. TRIAL REGISTRATION: DRKS, DRKS00015873 . Registered 12 December 2018; Retrospectively registered.


Assuntos
Exercício Físico , Microbioma Gastrointestinal , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Dieta , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Adulto Jovem
4.
Blood ; 130(4): 542-553, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28572286

RESUMO

The symbiotic gut microbiota play pivotal roles in host physiology and the development of cardiovascular diseases, but the microbiota-triggered pattern recognition signaling mechanisms that impact thrombosis are poorly defined. In this article, we show that germ-free (GF) and Toll-like receptor-2 (Tlr2)-deficient mice have reduced thrombus growth after carotid artery injury relative to conventionally raised controls. GF Tlr2-/- and wild-type (WT) mice were indistinguishable, but colonization with microbiota restored a significant difference in thrombus growth between the genotypes. We identify reduced plasma levels of von Willebrand factor (VWF) and reduced VWF synthesis, specifically in hepatic endothelial cells, as a critical factor that is regulated by gut microbiota and determines thrombus growth in Tlr2-/- mice. Static platelet aggregate formation on extracellular matrix was similarly reduced in GF WT, Tlr2-/- , and heterozygous Vwf+/- mice that are all characterized by a modest reduction in plasma VWF levels. Defective platelet matrix interaction can be restored by exposure to WT plasma or to purified VWF depending on the VWF integrin binding site. Moreover, administration of VWF rescues defective thrombus growth in Tlr2-/- mice in vivo. These experiments delineate an unexpected pathway in which microbiota-triggered TLR2 signaling alters the synthesis of proadhesive VWF by the liver endothelium and favors platelet integrin-dependent thrombus growth.


Assuntos
Microbioma Gastrointestinal , Fígado/metabolismo , Transdução de Sinais , Trombose/metabolismo , Receptor 2 Toll-Like/metabolismo , Fator de von Willebrand/biossíntese , Animais , Plaquetas/metabolismo , Plaquetas/patologia , Vida Livre de Germes , Fígado/patologia , Camundongos , Camundongos Knockout , Agregação Plaquetária/genética , Trombose/genética , Trombose/patologia , Receptor 2 Toll-Like/genética , Fator de von Willebrand/genética
5.
PLoS Comput Biol ; 13(6): e1005361, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640804

RESUMO

The analysis of microbiome compositions in the human gut has gained increasing interest due to the broader availability of data and functional databases and substantial progress in data analysis methods, but also due to the high relevance of the microbiome in human health and disease. While most analyses infer interactions among highly abundant species, the large number of low-abundance species has received less attention. Here we present a novel analysis method based on Boolean operations applied to microbial co-occurrence patterns. We calibrate our approach with simulated data based on a dynamical Boolean network model from which we interpret the statistics of attractor states as a theoretical proxy for microbiome composition. We show that for given fractions of synergistic and competitive interactions in the model our Boolean abundance analysis can reliably detect these interactions. Analyzing a novel data set of 822 microbiome compositions of the human gut, we find a large number of highly significant synergistic interactions among these low-abundance species, forming a connected network, and a few isolated competitive interactions.


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Interações Microbianas/fisiologia , Microbiota/fisiologia , Modelos Biológicos , Modelos Estatísticos , Carga Bacteriana/métodos , Carga Bacteriana/estatística & dados numéricos , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Metagenoma , Reconhecimento Automatizado de Padrão
6.
PLoS Pathog ; 11(7): e1005008, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26133982

RESUMO

Glycans play important roles in host-microbe interactions. Tissue-specific expression patterns of the blood group glycosyltransferase ß-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) are variable in wild mouse populations, and loss of B4galnt2 expression is associated with altered intestinal microbiota. We hypothesized that variation in B4galnt2 expression alters susceptibility to intestinal pathogens. To test this, we challenged mice genetically engineered to express different B4galnt2 tissue-specific patterns with a Salmonella Typhimurium infection model. We found B4galnt2 intestinal expression was strongly associated with bacterial community composition and increased Salmonella susceptibility as evidenced by increased intestinal inflammatory cytokines and infiltrating immune cells. Fecal transfer experiments demonstrated a crucial role of the B4galnt2-dependent microbiota in conferring susceptibility to intestinal inflammation, while epithelial B4galnt2 expression facilitated epithelial invasion of S. Typhimurium. These data support a critical role for B4galnt2 in gastrointestinal infections. We speculate that B4galnt2-specific differences in host susceptibility to intestinal pathogens underlie the strong signatures of balancing selection observed at the B4galnt2 locus in wild mouse populations.


Assuntos
Microbioma Gastrointestinal/genética , Predisposição Genética para Doença/genética , Mucosa Intestinal/microbiologia , N-Acetilgalactosaminiltransferases/biossíntese , Salmonelose Animal/genética , Animais , Ensaio de Imunoadsorção Enzimática , Interações Hospedeiro-Parasita/fisiologia , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Acetilgalactosaminiltransferases/genética , Reação em Cadeia da Polimerase em Tempo Real , Salmonelose Animal/microbiologia , Salmonella typhimurium , Transfecção
7.
Gut ; 65(2): 238-48, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25567118

RESUMO

OBJECTIVE: A global increase of IBD has been reported, especially in countries that previously had low incidence rates. Also, the knowledge of the human gut microbiome is steadily increasing, however, limited information regarding its variation on a global scale is available. In the light of the microbial involvement in IBDs, we aimed to (1) identify shared and distinct IBD-associated mucosal microbiota patterns from different geographical regions including Europe (Germany, Lithuania) and South Asia (India) and (2) determine whether profiling based on 16S rRNA transcripts provides additional resolution, both of which may hold important clinical relevance. DESIGN: In this study, we analyse a set of 89 mucosal biopsies sampled from individuals of German, Lithuanian and Indian origins, using bacterial community profiling of a roughly equal number of healthy controls, patients with Crohn's disease and UC from each location, and analyse 16S rDNA and rRNA as proxies for standing and active microbial community structure, respectively. RESULTS: We find pronounced population-specific as well as general disease patterns in the major phyla and patterns of diversity, which differ between the standing and active communities. The geographical origin of samples dominates the patterns of ß diversity with locally restricted disease clusters and more pronounced effects in the active microbial communities. However, two genera belonging to the Clostridium leptum subgroup, Faecalibacteria and Papillibacter, display consistent patterns with respect to disease status and may thus serve as reliable 'microbiomarkers'. CONCLUSIONS: These analyses reveal important interactions of patients' geographical origin and disease in the interpretation of disease-associated changes in microbial communities and highlight the added value of analysing communities on both the 16S rRNA gene (DNA) and transcript (RNA) level.


Assuntos
Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Clostridium/isolamento & purificação , Feminino , Alemanha , Humanos , Índia , Lituânia , Masculino , Microbiota , Pessoa de Meia-Idade , RNA Ribossômico , RNA Ribossômico 16S/análise , Adulto Jovem
8.
Int J Med Microbiol ; 306(5): 343-355, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27053239

RESUMO

The intestinal microbiota is involved in many physiological processes and it is increasingly recognized that differences in community composition can influence the outcome of a variety of murine models used in biomedical research. In an effort to describe and account for the variation in intestinal microbiota composition across the animal facilities of participating members of the DFG Priority Program 1656 "Intestinal Microbiota", we performed a survey of C57BL/6J mice from 21 different mouse rooms/facilities located at 13 different institutions across Germany. Fresh feces was sampled from five mice per room/facility using standardized procedures, followed by extraction and 16S rRNA gene profiling (V1-V2 region, Illumina MiSeq) at both the DNA and RNA (reverse transcribed to cDNA) level. In order to determine the variables contributing to bacterial community differences, we collected detailed questionnaires of animal husbandry practices and incorporated this information into our analyses. We identified considerable variation in a number of descriptive aspects including the proportions of major phyla, alpha- and beta diversity, all of which displayed significant associations to specific aspects of husbandry. Salient findings include a reduction in alpha diversity with the use of irradiated chow, an increase in inter-individual variability (beta diversity) with respect to barrier access and open cages and an increase in bacterial community divergence with time since importing from a vendor. We further observe a high degree of facility-level individuality, which is likely due to each facility harboring its own unique combination of multiple varying attributes of animal husbandry. While it is important to account and control for such differences between facilities, the documentation of such diversity may also serve as a valuable future resource for investigating the origins of microbial-driven host phenotypes.


Assuntos
Criação de Animais Domésticos/métodos , Fezes/microbiologia , Microbioma Gastrointestinal , Animais , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Alemanha , Masculino , Camundongos Endogâmicos C57BL , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Inquéritos e Questionários
9.
Proc Natl Acad Sci U S A ; 108(47): 19030-5, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22068912

RESUMO

The FUT2 (Secretor) gene is responsible for the presence of ABO histo-blood group antigens on the gastrointestinal mucosa and in bodily secretions. Individuals lacking a functional copy of FUT2 are known as "nonsecretors" and display an array of differences in susceptibility to infection and disease, including Crohn disease. To determine whether variation in resident microbial communities with respect to FUT2 genotype is a potential factor contributing to susceptibility, we performed 454-based community profiling of the intestinal microbiota in a panel of healthy subjects and Crohn disease patients and determined their genotype for the primary nonsecretor allele in Caucasian populations, W143X (G428A). Consistent with previous studies, we observe significant deviations in the microbial communities of individuals with Crohn disease. Furthermore, the FUT2 genotype explains substantial differences in community composition, diversity, and structure, and we identified several bacterial species displaying disease-by-genotype associations. These findings indicate that alterations in resident microbial communities may in part explain the variety of host susceptibilities surrounding nonsecretor status and that FUT2 is an important genetic factor influencing host-microbial diversity.


Assuntos
Colo/microbiologia , Doença de Crohn/genética , Doença de Crohn/microbiologia , Fucosiltransferases/genética , Mucosa Intestinal/microbiologia , Metagenoma/genética , Análise de Variância , Sequência de Bases , Genótipo , Alemanha , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Análise de Sequência de DNA , População Branca/genética , Galactosídeo 2-alfa-L-Fucosiltransferase
10.
PNAS Nexus ; 3(1): pgad427, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38205031

RESUMO

Microbial communities in the intestinal tract are suggested to impact the ethiopathogenesis of Alzheimer's disease (AD). The human microbiome might modulate neuroinflammatory processes and contribute to neurodegeneration in AD. However, the microbial compositions in patients with AD at different stages of the disease are still not fully characterized. We used 16S rRNA analyses to investigate the oral and fecal microbiota in patients with AD and mild cognitive impairment (MCI; n = 84), at-risk individuals (APOE4 carriers; n = 17), and healthy controls (n = 50) and investigated the relationship of microbial communities and disease-specific markers via multivariate- and network-based approaches. We found a slightly decreased diversity in the fecal microbiota of patients with AD (average Chao1 diversity for AD = 212 [SD = 66]; for controls = 215 [SD = 55]) and identified differences in bacterial abundances including Bacteroidetes, Ruminococcus, Sutterella, and Porphyromonadaceae. The diversity in the oral microbiota was increased in patients with AD and at-risk individuals (average Chao1 diversity for AD = 174 [SD = 60], for at-risk group = 195 [SD = 49]). Gram-negative proinflammatory bacteria including Haemophilus, Neisseria, Actinobacillus, and Porphyromonas were dominant oral bacteria in patients with AD and MCI and the abundance correlated with the cerebrospinal fluid biomarker. Taken together, we observed a strong shift in the fecal and the oral communities of patients with AD already prominent in prodromal and, in case of the oral microbiota, in at-risk stages. This indicates stage-dependent alterations in oral and fecal microbiota in AD which may contribute to the pathogenesis via a facilitated intestinal and systemic inflammation leading to neuroinflammation and neurodegeneration.

11.
Front Microbiol ; 15: 1347422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476944

RESUMO

Metaorganism research contributes substantially to our understanding of the interaction between microbes and their hosts, as well as their co-evolution. Most research is currently focused on the bacterial community, while archaea often remain at the sidelines of metaorganism-related research. Here, we describe the archaeome of a total of eleven classical and emerging multicellular model organisms across the phylogenetic tree of life. To determine the microbial community composition of each host, we utilized a combination of archaea and bacteria-specific 16S rRNA gene amplicons. Members of the two prokaryotic domains were described regarding their community composition, diversity, and richness in each multicellular host. Moreover, association with specific hosts and possible interaction partners between the bacterial and archaeal communities were determined for the marine models. Our data show that the archaeome in marine hosts predominantly consists of Nitrosopumilaceae and Nanoarchaeota, which represent keystone taxa among the porifera. The presence of an archaeome in the terrestrial hosts varies substantially. With respect to abundant archaeal taxa, they harbor a higher proportion of methanoarchaea over the aquatic environment. We find that the archaeal community is much less diverse than its bacterial counterpart. Archaeal amplicon sequence variants are usually host-specific, suggesting adaptation through co-evolution with the host. While bacterial richness was higher in the aquatic than the terrestrial hosts, a significant difference in diversity and richness between these groups could not be observed in the archaeal dataset. Our data show a large proportion of unclassifiable archaeal taxa, highlighting the need for improved cultivation efforts and expanded databases.

12.
Inflamm Bowel Dis ; 29(7): 1118-1132, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36735955

RESUMO

BACKGROUND: Microbial communities have long been suspected to influence inflammatory processes in the gastrointestinal tract of patients with inflammatory bowel disease. However, these effects are often influenced by treatments and can rarely be analyzed in treatment-naïve onset cases. Specifically, microbial differences between IBD pathologies in new onset cases have rarely been investigated and can provide novel insight into the dynamics of the microbiota in Crohn's disease (CD) and ulcerative colitis (UC). METHODS: Fifty-six treatment-naïve IBD onset patients (67.3% CD, 32.7% UC) and 97 healthy controls were recruited from the Maltese population. Stool samples were collected after diagnosis but before administration of anti-inflammatory treatments. Fecal microbial communities were assessed via 16S rRNA gene sequencing and subjected to ecological analyses to determine disease-specific differences between pathologies and disease subtypes or to predict future treatment options. RESULTS: We identified significant differences in community composition, variability, and diversity between healthy and diseased individuals-but only small to no differences between the newly diagnosed, treatment-naïve UC and CD cohorts. Network analyses revealed massive turnover of bacterial interactions between healthy and diseased communities, as well as between CD and UC communities, as signs of disease-specific changes of community dynamics. Furthermore, we identified taxa and community characteristics serving as predictors for prospective treatments. CONCLUSION: Untreated and newly diagnosed IBD shows clear differences from healthy microbial communities and an elevated level of disturbance, but only the network perspective revealed differences between pathologies. Furthermore, future IBD treatment is to some extent predictable by microbial community characteristics.


Treatment-naïve IBD onset patients from Malta show clear differences from healthy microbial communities and an elevated level of community disturbance, although differences between pathologies are only revealed by a network perspective. Furthermore, future IBD treatment is predictable by microbial community characteristics.


Assuntos
Colite Ulcerativa , Doença de Crohn , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Doença de Crohn/diagnóstico , Doença de Crohn/microbiologia , Colite Ulcerativa/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Fezes/microbiologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-36948591

RESUMO

BACKGROUND AND OBJECTIVES: Anti-N-methyl-D-aspartate receptor encephalitis (NMDARE) is the most common form of autoimmune encephalitis in children and adults. Although our understanding of the disease mechanisms has progressed, little is known about estimating patient outcomes. Therefore, the NEOS (anti-NMDAR Encephalitis One-Year Functional Status) score was introduced as a tool to predict disease progression in NMDARE. Developed in a mixed-age cohort, it currently remains unclear whether NEOS can be optimized for pediatric NMDARE. METHODS: This retrospective observational study aimed to validate NEOS in a large pediatric-only cohort of 59 patients (median age of 8 years). We reconstructed the original score, adapted it, evaluated additional variables, and assessed its predictive power (median follow-up of 20 months). Generalized linear regression models were used to examine predictability of binary outcomes based on the modified Rankin Scale (mRS). In addition, neuropsychological test results were investigated as alternative cognitive outcome. RESULTS: The NEOS score reliably predicted poor clinical outcome (mRS ≥3) in children in the first year after diagnosis (p = 0.0014) and beyond (p = 0.036, 16 months after diagnosis). A score adapted to the pediatric cohort by adjusting the cutoffs of the 5 NEOS components did not improve predictive power. In addition to these 5 variables, further patient characteristics such as the "Herpes simplex virus encephalitis (HSE) status" and "age at disease onset" influenced predictability and could potentially be useful to define risk groups. NEOS also predicted cognitive outcome with higher scores associated with deficits of executive function (p = 0.048) and memory (p = 0.043). DISCUSSION: Our data support the applicability of the NEOS score in children with NMDARE. Although not yet validated in prospective studies, NEOS also predicted cognitive impairment in our cohort. Consequently, the score could help identify patients at risk of poor overall clinical outcome and poor cognitive outcome and thus aid in selecting not only optimized initial therapies for these patients but also cognitive rehabilitation to improve long-term outcomes.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Encefalite por Herpes Simples , Adulto , Criança , Humanos , Encefalite Antirreceptor de N-Metil-D-Aspartato/tratamento farmacológico , Estudos de Coortes , Estudos Retrospectivos , Estudos Prospectivos , Encefalite por Herpes Simples/complicações , Receptores de N-Metil-D-Aspartato
14.
J Hepatol ; 57(2): 366-75, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22521342

RESUMO

BACKGROUND & AIMS: A limited number of genetic risk factors have been reported in primary sclerosing cholangitis (PSC). To discover further genetic susceptibility factors for PSC, we followed up on a second tier of single nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS). METHODS: We analyzed 45 SNPs in 1221 PSC cases and 3508 controls. The association results from the replication analysis and the original GWAS (715 PSC cases and 2962 controls) were combined in a meta-analysis comprising 1936 PSC cases and 6470 controls. We performed an analysis of bile microbial community composition in 39 PSC patients by 16S rRNA sequencing. RESULTS: Seventeen SNPs representing 12 distinct genetic loci achieved nominal significance (p(replication) <0.05) in the replication. The most robust novel association was detected at chromosome 1p36 (rs3748816; p(combined)=2.1 × 10(-8)) where the MMEL1 and TNFRSF14 genes represent potential disease genes. Eight additional novel loci showed suggestive evidence of association (p(repl) <0.05). FUT2 at chromosome 19q13 (rs602662; p(comb)=1.9 × 10(-6), rs281377; p(comb)=2.1 × 10(-6) and rs601338; p(comb)=2.7 × 10(-6)) is notable due to its implication in altered susceptibility to infectious agents. We found that FUT2 secretor status and genotype defined by rs601338 significantly influence biliary microbial community composition in PSC patients. CONCLUSIONS: We identify multiple new PSC risk loci by extended analysis of a PSC GWAS. FUT2 genotype needs to be taken into account when assessing the influence of microbiota on biliary pathology in PSC.


Assuntos
Colangite Esclerosante/genética , Fucosiltransferases/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bile/microbiologia , Criança , Pré-Escolar , Colangite Esclerosante/microbiologia , Feminino , Fucosiltransferases/fisiologia , Loci Gênicos , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Neprilisina/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Risco , Galactosídeo 2-alfa-L-Fucosiltransferase
15.
Arthritis Res Ther ; 24(1): 54, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193655

RESUMO

BACKGROUND: Chronic recurrent multifocal osteomyelitis (CRMO) is a rare autoinflammatory bone disease for which a lack of bacterial involvement is a key diagnostic feature to distinguish it from other symptomatically related diseases. However, the growing evidence suggesting an involvement of the host-associated microbiota in rheumatic disorders together with the now wide accessibility of modern culture-independent methods warrant a closer examination of CRMO. METHODS: In this study, we show through bacterial 16S rRNA gene profiling that numerous features of the oral- and fecal microbial communities differentiate children with and without CRMO. RESULTS: Notably, communities in diseased children are characterized by a lack of potential probiotic bacteria in the fecal community and an overabundance of known pathobionts in the oral microbial communities. Of special interest is the HACEK group, a set of commonly known oral pathogens that are implicated in the development of several acute and chronic diseases such as osteitis and rheumatoid arthritis. Furthermore, we observe that gut bacterial communities in the diseased children appear to reflect an altered host physiology more strongly than the oral community, which could suggest an oral disease origin followed by propagation and/or responses beyond the oral cavity. CONCLUSIONS: Bacterial communities, in particular the oral microbiota, may serve as an indicator of underlying susceptibility to CRMO, or play a yet undefined role in its development.


Assuntos
Microbiota , Osteíte , Osteomielite , Criança , Doença Crônica , Humanos , Microbiota/genética , Osteomielite/diagnóstico , RNA Ribossômico 16S/genética
16.
Mol Nutr Food Res ; : e2101098, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760036

RESUMO

SCOPE: The gut microbiome regulates various metabolic pathways in the host and its dysbiosis is involved in the pathogenesis of diverse diseases. One of the major factors triggering gut microbiome establishment is diet. This study aims to unravel interactions and changes between diet and gut microbiome over a period of 3 years. METHODS AND RESULTS: This study investigates the relation between diet and the microbiome of 75 individuals over a 3-year time period. Shotgun metagenomic sequencing is performed to profile gut microbial composition and function. This study shows that there are significant changes in gut microbiome taxonomy and functional composition between two time points. Whereas microbial taxonomy is found to be highly individualized, overall microbial functions stay relatively stable. Moreover, in silico metabolic modeling of microbial communities indicates that changes in dietary intake of medium-chain saturated fatty acids is accompanied by an altered utilization of amino acids by the gut microbiome. CONCLUSION: The study design allows us to validate functional stability within the gut microbiome of healthy subjects over a 3-year period. However, enduring changes in nutrition such as increased alcohol consumption or decreased intake of vegetables come along with enhanced microbial functions that are associated with disease etiology.

17.
Microbiol Spectr ; 10(3): e0061622, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35532243

RESUMO

Inflammatory bowel disease (IBD) is a chronic, relapsing, inflammatory disorder which comprises two main conditions: Crohn's disease (CD) and ulcerative colitis (UC). Although the etiology of IBD has not been fully elucidated, the gut microbiota is hypothesized to play a vital role in its development. The aim of this cross-sectional study was to characterize the fecal microbiota in CD or UC patients in a state of remission to reveal potential factors sustaining residual levels of inflammation and triggering disease relapses. Ninety-eight IBD patients in a state of clinical remission (66 UC, 32 CD) and 97 controls were recruited, and stool samples, as well as detailed patient data, were collected. After DNA extraction, the variable regions V1 and V2 of the 16S rRNA gene were amplified and sequenced. Patients with IBD had a decrease in alpha diversity compared to that of healthy controls, and the beta diversity indices showed dissimilarity between the cohorts. Healthy controls were associated with the beneficial organisms unclassified Akkermansia species (Akkermansia uncl.), Oscillibacter uncl., and Coprococcus uncl., while flavonoid-degrading bacteria were associated with IBD. Network analysis identified highly central and influential disease markers and a strongly correlated network module of Enterobacteriaceae which was associated with IBD and could act as drivers for residual inflammatory processes sustaining and triggering IBD, even in a state of low disease activity. The microbiota in IBD patients is significantly different from that of healthy controls, even in a state of remission, which implicates the microbiota as an important driver of chronicity in IBD. IMPORTANCE Dysbiosis in inflammatory bowel disease (IBD) has been implicated as a causal or contributory factor to the pathogenesis of the disease. This study, done on patients in remission while accounting for various confounding factors, shows significant community differences and altered community dynamics, even after acute inflammation has subsided. A cluster of Enterobacteriaceae was linked with Crohn's disease, suggesting that this cluster, which contains members known to disrupt colonization resistance and form biofilms, persists during quiescence and can lead to chronic inflammation. Flavonoid-degrading bacteria were also associated with IBD, raising the possibility that modification of dietary flavonoids might induce and maintain remission in IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Bactérias/genética , Colite Ulcerativa/microbiologia , Estudos Transversais , Disbiose/microbiologia , Enterobacteriaceae/genética , Fezes/microbiologia , Flavonoides , Microbioma Gastrointestinal/genética , Humanos , Inflamação , Doenças Inflamatórias Intestinais/microbiologia , RNA Ribossômico 16S/genética
18.
Front Immunol ; 12: 629391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122403

RESUMO

Little is known about the involvement of type 2 immune response-promoting intestinal tuft cells in metabolic regulation. We here examined the temporal changes in small intestinal tuft cell number and activity in response to high-fat diet-induced obesity in mice and investigated the relation to whole-body energy metabolism and the immune phenotype of the small intestine and epididymal white adipose tissue. Intake of high fat diet resulted in a reduction in overall numbers of small intestinal epithelial and tuft cells and reduced expression of the intestinal type 2 tuft cell markers Il25 and Tslp. Amongst >1,700 diet-regulated transcripts in tuft cells, we observed an early association between body mass expansion and increased expression of the gene encoding the serine protease inhibitor neuroserpin. By contrast, tuft cell expression of genes encoding gamma aminobutyric acid (GABA)-receptors was coupled to Tslp and Il25 and reduced body mass gain. Combined, our results point to a possible role for small intestinal tuft cells in energy metabolism via coupled regulation of tuft cell type 2 markers and GABA signaling receptors, while being independent of type 2 immune cell involvement. These results pave the way for further studies into interventions that elicit anti-obesogenic circuits via small intestinal tuft cells.


Assuntos
Metabolismo Energético , Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , Obesidade/metabolismo , Tecido Adiposo Branco/imunologia , Tecido Adiposo Branco/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Células Epiteliais/imunologia , Regulação da Expressão Gênica , Interleucinas/genética , Interleucinas/metabolismo , Intestino Delgado/imunologia , Masculino , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Obesidade/etiologia , Obesidade/genética , Obesidade/imunologia , Fenótipo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Serpinas/genética , Serpinas/metabolismo , Transdução de Sinais , Fatores de Tempo , Aumento de Peso , Linfopoietina do Estroma do Timo , Neuroserpina
19.
Mol Ecol ; 19(19): 4155-67, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20723049

RESUMO

Genes of the major histocompatibility complex (MHC) play a fundamental role in the vertebrate immune response and are amongst the most polymorphic genes in vertebrate genomes. It is generally agreed that the highly polymorphic nature of the MHC is maintained through host-parasite co-evolution. Two nonexclusive mechanisms of selection are supposed to act on MHC genes: superiority of MHC heterozygous individuals (overdominance) and an advantage for rare MHC alleles. However, the precise mechanisms and their relative importance are still unknown. Here, we examined MHC dependent parasite load in European rabbits (Oryctolagus cuniculus) from a distinct population with low MHC diversity (three alleles, six genotypes). Using a multivariate approach, we tested for associations of individual MHC class II DRB constitution and the rabbits' intestinal burden with nematodes and coccidia. Rabbits having a particular allele showed lower infestations with hepatic coccidia (E. stiedai). However, a comparison of all six genotypes in the population revealed that carriers of this allele only benefit when they are heterozygous, and furthermore, MHC heterozygosity in general did not affect individual parasite load. In conclusion, this study suggests an immunogenetic basis of European rabbit resistance to hepatic coccidiosis, which can strongly limit survival to maturity in this species. Our study gives a complex picture of MHC-parasite correlations, unveiling the limits of the classical hypotheses of how MHC polymorphism is maintained in natural systems.


Assuntos
Coccídios , Antígenos de Histocompatibilidade Classe II/genética , Nematoides , Carga Parasitária , Coelhos/genética , Coelhos/parasitologia , Fatores Etários , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Genótipo , Alemanha , Modelos Lineares , Fígado/parasitologia , Masculino , Dados de Sequência Molecular , Análise Multivariada
20.
Inflamm Bowel Dis ; 26(1): 66-79, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276162

RESUMO

Crohn's disease (CD) patients can be grouped into patients suffering from ileitis, ileocolitis, jejunoileitis, and colitis. The pathophysiological mechanism underlying this regional inflammation is still unknown. Although most murine models of inflammatory bowel disease (IBD) develop inflammation in the colon, there is an unmet need for novel models that recapitulate the spontaneous and fluctuating nature of inflammation as seen in CD. Recently, mice with an intestinal epithelial cell-specific deletion for Caspase-8 (Casp8ΔIEC mice), which are characterized by cell death-driven ileitis and disrupted Paneth cell homeostasis, have been identified as a novel model of CD-like ileitis. Here we uncovered that genetic susceptibility alone is sufficient to drive ileitis in Casp8ΔIEC mice. In sharp contrast, environmental factors, such as a disease-relevant microbial flora, determine colonic inflammation. Accordingly, depending on the microbial environment, isogenic Casp8ΔIEC mice either exclusively developed ileitis or suffered from pathologies in several parts of the gastrointestinal tract. Colitis in these mice was characterized by massive epithelial cell death, leading to spread of commensal gut microbes to the extra-intestinal space and hence an aberrant activation of the systemic immunity. We further uncovered that Casp8ΔIEC mice show qualitative and quantitative changes in the intestinal microbiome associated with an altered mucosal and systemic immune response. In summary, we identified that inflammation in this murine model of CD-like inflammation is characterized by an immune reaction, presumably directed against a disease-relevant microbiota in a genetically susceptible host, with impaired mucosal barrier function and bacterial clearance at the epithelial interface.


Assuntos
Doença de Crohn/microbiologia , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Ileíte/microbiologia , Mucosa Intestinal/microbiologia , Animais , Caspase 8 , Doença de Crohn/genética , Modelos Animais de Doenças , Predisposição Genética para Doença/genética , Ileíte/genética , Inflamação , Mucosa Intestinal/imunologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA