Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955493

RESUMO

Dipeptidyl-peptidase IV (DPP-IV) plays an essential role in glucose metabolism by inactivating incretins. In this context, food-protein-derived DPP-IV inhibitors are promising glycemic regulators which may act by preventing the onset of type 2 diabetes in personalized nutrition. In this study, the DPP-IV-inhibitory potential of seven proteins from diverse origins was compared for the first time in vitro and in vivo in rat plasma after the intestinal barrier (IB) passage of the indigested proteins. The DPP-IV-inhibitory potentials of bovine hemoglobin, caseins, chicken ovalbumin, fish gelatin, and pea proteins were determined in rat plasma thirty minutes after oral administration. In parallel, these proteins, together with bovine whey and gluten proteins, were digested using the harmonized INFOGEST protocol adapted for proteins. The DPP-IV half-maximal inhibitory concentration (IC50) was determined in situ using Caco-2 cells. The DPP-IV-inhibitory activity was also measured after IB passage using a Caco2/HT29-MTX mixed-cell model. The peptide profiles were analyzed using reversed-phase high-performance liquid chromatography tandem mass spectrometry (RP-HPLC-MS/MS) with MS data bioinformatics management, and the IC50 of the identified peptides was predicted in silico. The in vitro and in vivo DPP-IV-inhibitory activity of the proteins differed according to their origin. Vegetable proteins and hemoglobin yielded the highest DPP-IV-inhibitory activity in vivo. However, no correlation was found between the in vivo and in vitro results. This may be partially explained by the differences between the peptidome analysis and the in silico predictions, as well as the study complexity.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Animais , Células CACO-2 , Digestão , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Humanos , Peptídeos/química , Ratos , Espectrometria de Massas em Tandem
2.
Molecules ; 26(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396793

RESUMO

Like their owners, dogs and cats are more and more affected by overweight and obesity-related problems and interest in functional pet foods is growing sharply. Through numerous studies, fish protein hydrolysates have proved their worth to prevent and manage obesity-related comorbidities like diabetes. In this work, a human in vitro static simulated gastrointestinal digestion model was adapted to the dog which allowed us to demonstrate the promising effects of a tilapia byproduct hydrolysate on the regulation of food intake and glucose metabolism. Promising effects on intestinal hormones secretion and dipeptidyl peptidase IV (DPP-IV) inhibitory activity were evidenced. We identify new bioactive peptides able to stimulate cholecystokinin (CCK) and glucagon-like peptide 1 (GLP-1) secretions, and to inhibit the DPP-IV activity after a transport study through a Caco-2 cell monolayer.


Assuntos
Ração Animal , Trato Gastrointestinal/fisiologia , Peptídeos/química , Hidrolisados de Proteína/química , Tilápia/metabolismo , Animais , Transporte Biológico , Células CACO-2 , Doenças do Gato/prevenção & controle , Gatos , Colecistocinina/metabolismo , Dipeptidil Peptidase 4/metabolismo , Doenças do Cão/prevenção & controle , Cães , Produtos Pesqueiros , Hormônios Gastrointestinais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Humanos , Hidrólise , Técnicas In Vitro , Espectrometria de Massas , Sobrepeso , Suínos
3.
Bioprocess Biosyst Eng ; 40(2): 161-180, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27738757

RESUMO

Innovations in novel enzyme discoveries impact upon a wide range of industries for which biocatalysis and biotransformations represent a great challenge, i.e., food industry, polymers and chemical industry. Key tools and technologies, such as bioinformatics tools to guide mutant library design, molecular biology tools to create mutants library, microfluidics/microplates, parallel miniscale bioreactors and mass spectrometry technologies to create high-throughput screening methods and experimental design tools for screening and optimization, allow to evolve the discovery, development and implementation of enzymes and whole cells in (bio)processes. These technological innovations are also accompanied by the development and implementation of clean and sustainable integrated processes to meet the growing needs of chemical, pharmaceutical, environmental and biorefinery industries. This review gives an overview of the benefits of high-throughput screening approach from the discovery and engineering of biocatalysts to cell culture for optimizing their production in integrated processes and their extraction/purification.


Assuntos
Enzimas/biossíntese , Enzimas/química , Enzimas/genética , Engenharia de Proteínas/métodos , Catálise
4.
Electrophoresis ; 37(13): 1814-22, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26990205

RESUMO

Consumers and governments have become aware how the daily diet may affect the human health. All proteins from both plant and animal origins are potential sources of a wide range of bioactive peptides and the large majority of those display health-promoting effects. In the meat production food chain, the slaughterhouse blood is an inevitable co-product and, today, the blood proteins remain underexploited despite their bioactive potentiality. Through a comparative food peptidomics approach we illustrate the impact of resolving power, accuracy, sensitivity, and acquisition speed of low-resolution (LR)- and high-resolution (HR)-LC-ESI-MS/MS on the obtained peptide mappings and discuss the limitations of MS-based peptidomics. From in vitro gastrointestinal digestions of partially purified bovine hemoglobin, we have established the peptide maps of each hemoglobin chain. LR technique (normal bore C18 LC-LR-ESI-MS/MS) allows us to identify without ambiguity 75 unique peptides while the HR approach (nano bore C18 LC-HR-ESI-MS/MS) unambiguously identify more than 950 unique peptides (post-translational modifications included). Herein, the food peptidomics approach using the most performant separation methods and mass spectrometers with high-resolution capabilities appears as a promising source of information to assess the health potentiality of proteins.


Assuntos
Cromatografia Líquida/métodos , Digestão , Análise de Alimentos , Hemoglobinas/metabolismo , Peptídeos/metabolismo , Proteômica , Espectrometria de Massas em Tandem/métodos , Animais , Bovinos , Técnicas In Vitro , Mapeamento de Peptídeos
5.
Food Funct ; 15(15): 8104-8115, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39007353

RESUMO

Calcium is the most abundant mineral in the human body and is involved in critical physiological and cellular processes. It is essential for the development, maintenance, and integrity of bone tissue throughout life. Identifying new natural food-grade chelating agents to improve calcium uptake is of increasing interest. Casein phosphopeptides (CPPs), highly phosphorylated peptides obtained after enzymatic hydrolysis of caseins, represent promising calcium-chelating candidates. The aim of this study was to investigate, using cell culture models, the ability of a digested milk matrix enriched in CPPs to regulate calcium transport through the intestinal barrier and elucidate the involved mechanisms. To this end, a CPP-preparation underwent in vitro static digestion and was subsequently incubated with an intestinal barrier model to monitor calcium uptake and transport. Our results demonstrated that the digested CPP preparation enhanced the trans-epithelial calcium transport via paracellular pathways and that CPPs, identified by peptidomics, crossed the intestinal barrier in the same time.


Assuntos
Cálcio , Caseínas , Mucosa Intestinal , Fosfopeptídeos , Caseínas/farmacologia , Caseínas/metabolismo , Caseínas/química , Fosfopeptídeos/farmacologia , Fosfopeptídeos/metabolismo , Fosfopeptídeos/química , Humanos , Cálcio/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Células CACO-2 , Transporte Biológico , Animais , Digestão , Absorção Intestinal/efeitos dos fármacos
6.
Foods ; 12(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37444262

RESUMO

Bioinformatics software, allowing the identification of peptides by the comparison of peptide fragmentation spectra obtained by mass spectrometry versus targeted databases or directly by de novo sequencing, is now mandatory in peptidomics/proteomics approaches. Programming the identification software requires specifying, among other things, the mass measurement accuracy of the instrument and the digestion enzyme used with the number of missed cleavages allowed. Moreover, these software algorithms are able to identify a large number of post-translational modifications (PTMs). However, peptide and PTM identifications are challenging in the agrofood field due to non-specific cleavage sites of physiological- or food-grade enzymes and the number and location of PTMs. In this study, we show the importance of customized software programming to obtain a better peptide and PTM identification rate in the agrofood field. A gelatine product and one industrial gelatine hydrolysate from three different sources (beef, pork, and fish), each digested by simulated gastrointestinal digestion, MS-grade trypsin, or both, were used to perform the comparisons. Two main points are illustrated: (i) the impact of the set-up of specific enzyme versus no specific enzyme use and (ii) the impact of a maximum of six PTMs allowed per peptide versus the standard of three. Prior knowledge of the composition of the raw proteins is an important asset for better identification of peptide sequences.

7.
Food Funct ; 14(9): 4173-4182, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37066543

RESUMO

Research on new strategies to regulate glucose homeostasis to prevent or manage type 2 diabetes is a critical challenge. Several studies have shown that protein-rich diets could improve glucose homeostasis. Whey protein hydrolysis allows the release of amino acids and bioactive peptides, which exert numerous well-documented bioactivities. This study evaluates and compares the hypoglycemic potential of a whey protein hydrolysate and a whey protein isolate after static in vitro simulated gastrointestinal digestion (SGID) using the INFOGEST protocol. The peptide molecular mass distributions of the digested samples were evaluated by size exclusion chromatography and show that after digestion, the whey hydrolysate is significantly more hydrolyzed. After SGID, the whey protein hydrolysate induces a significative greater secretion of GLP-1 after two hours of contact with the enteroendocrine STC-1 cell line than the whey protein after isolation. In addition, the digested whey hydrolysate increases preproglucagon (GCG) and pro-convertase-1 (PCSK1) expression. The digested hydrolysate also inhibits the DPP-IV activity after an intestinal barrier passage challenge using a Caco-2/HT29-MTX mixed-cell model. Our results highlight that the prehydrolysis of whey proteins modify the intestinal peptidome, leading to a potentially greater hypoglycemic effect. This study confirms the previously observed in vitro hypoglycemic effect of this hydrolysate and evidences the beneficial impact of the industrial hydrolysis process.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Proteínas do Soro do Leite/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Células CACO-2 , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Hipoglicemiantes/farmacologia , Peptídeos/farmacologia , Homeostase , Glucose
8.
Metabolites ; 13(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37233640

RESUMO

Baillonella toxisperma is a medicinal plant used in northern Gabon to treat microbial diseases. It is a plant well-known by local populations, but very few studies have focused on the molecules responsible for the antibacterial activities of B. toxisperma. This study proposes a dereplication strategy based on molecular networking generated from HPLC-ESI-Q/TOF data, allowing investigation of the molecules responsible for the antibacterial activity of B. toxisperma. From this strategy, eighteen compounds were putatively identified. All of these compounds belonged mainly to five families of natural compounds, including phenylpropanolamines, stilbenes, flavonoids, lignans and phenolic glycosides. The chemical study carried out from the bark of B. toxisperma allowed us to identify, for the first time, compounds such as resveratrol and derivatives, epicatechin, epigallocatechin and epigallocatechin gallate. In addition, antibacterial activity (diffusion method and microdilution) and cytotoxicity (Cell Counting Kit-8 (CCK-8 Assay)) in vitro were evaluated. The crude ethanolic extract, as well as the fractions of B. toxisperma, showed significant antibacterial activity. However, the ethanolic fractions F2 and F4 presented high antibacterial activity compared to the crude extract. Cytotoxicity studies on colon-cancer cells (Caco-2) and human keratinocyte cells (HaCaT) showed moderate cytotoxicity in both cell types. This study clearly shows the therapeutic potential of the ethanolic extract of the bark of B. toxisperma and provides information on the phytochemical composition and bioactive compounds of the plant.

9.
Food Res Int ; 169: 112814, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254390

RESUMO

OBJECTIVE: The aim of this study was to analyze the protein digestibility and postprandial metabolism in rats of milk protein matrices obtained by different industrial processes. MATERIAL AND METHODS: The study was conducted on Wistar rats that consumed a meal containing different 15N-labeled milk proteins. Four milk matrices were tested: native micellar caseins (C1), caseins low in calcium (C2 low Ca2+), a matrix containing a ratio 63:37 of caseins and whey proteins (CW2) and whey proteins alone (W). Blood and urine were collected during the postprandial period and rats were euthanized 6 h after meal intake to collect digestive contents and organs. RESULTS: Orocaecal digestibility values of amino acids ranged between 96.0 ± 0.2% and 96.6 ± 0.4% for C1-, C2 low Ca2+- and W-matrices, while this value was significantly lower for CW2 matrix (92.4 ± 0.5%). More dietary nitrogen was sequestered in the splanchnic area (intestinal mucosa and liver) as well as in plasma proteins after ingestion of W matrix, especially compared to the C1- and C2 low Ca2+-matrices. Peptidomic analysis showed that more milk protein-derived peptides were identified in the caecum of rats after the ingestion of the matrices containing caseins compared to W matrix. CONCLUSION: We found that demineralization of micellar caseins did not modify its digestibility and postprandial metabolism. The low digestibility of the modified casein-to-whey ratio matrix may be ascribed to a lower accessibility of the protein to digestive enzymes due to changes in the protein structure, while the higher nitrogen splanchnic retention after ingestion of whey was probably due to the fast assimilation of its protein content. Finally, our results showed that industrial processes that modify the structure and/or composition of milk proteins influence protein digestion and utilization.


Assuntos
Aminoácidos , Proteínas do Leite , Ratos , Animais , Proteínas do Leite/química , Aminoácidos/metabolismo , Caseínas/química , Proteínas do Soro do Leite , Período Pós-Prandial , Ratos Wistar , Nitrogênio/metabolismo , Peptídeos
10.
Front Microbiol ; 13: 914713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35794911

RESUMO

This study investigated the antiradical and antioxidant potential of the three families of lipopeptides (i.e., surfactin, mycosubtilin, and plipastatin/fengycin) produced by Bacillus subtilis strains. The antiradical/antioxidant activities of highly purified lipopeptides were studied in acellular models using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, superoxide anion ( O 2 . - ), hydrogen peroxide, (H2O2) and hydroxyl radical (HO.). At a lipopeptide concentration of 500 mg.L-1, the maximum inhibition of DPPH reached 22.88% (obtained for plipastatin). Moreover, the scavenging effects of O 2 . - , H2O2, and HO. at the highest concentration tested (250 mg.L-1) were found to be 6, 21, and 3% for surfactin, 19, 9, and 15% for mycosubtilin, 21, 18, and 59% for plipastatin, 21, 31, and 61% for the mixture of surfactin/plipastatin, and 13, 16, and 15% for the mixture of surfactin/mycosubtilin, respectively. These results showed that plipastatin was the best candidate due to its antioxidant activities.

11.
Food Res Int ; 157: 111360, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761622

RESUMO

Milk and dairy products are significant sources of proteins and peptides impacting human health. In this way, the interest in CPPs, bioactive phosphorylated peptides resulting from the hydrolysis of caseins, has grown in the past years. CPPs were mainly studied for their capacity to chelate and increase the bioavailability of essential minerals involved in multiple physiological processes. Moreover, CPPs harbour interesting antioxidant and anti-inflammatory properties. Recent in vivo and in vitro studies demonstrated that these different roles are strongly linked to the intrinsic properties of CPPs and CPP concentrate preparations. This review first comments on the different methods of CPP analytical characterization, focusing on recent techniques. Then, the CPP release occurring during the gastrointestinal digestion was reviewed, followed by the different CPP obtention processes and their impact on their physicochemical characteristics. Finally, the different bioactive roles attributed to CPPs, including mineral chelating properties, are discussed. We show that CPPs have a promising role in treating various pathologies, notably to compensate for deficiencies in certain nutrients and an anti-oxidant and anti-inflammatory role. Nevertheless, the mechanisms by which CPPs exert their role remain to be elucidated, and this requires precise characterization of CPPs. This work highlights the key parameters to be considered to study and produce CPPs and the different ways to be investigated in the future to elucidate their roles in vivo and characterize their potential for human health.


Assuntos
Caseínas , Fosfopeptídeos , Animais , Disponibilidade Biológica , Caseínas/química , Humanos , Leite/química , Minerais/análise , Fosfopeptídeos/química
12.
Nutrients ; 14(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35267932

RESUMO

Industrial chicory has been the subject of numerous studies, most of which provide clinical observations on its health effects. Whether it is the roasted root, the flour obtained from the roots or the different classes of molecules that enter into the composition of this plant, understanding the molecular mechanisms of action on the human organism remains incomplete. In this study, we were interested in three molecules or classes of molecules present in chicory root: fructose, chlorogenic acids, and sesquiterpene lactones. We conducted experiments on the murine model and performed a nutrigenomic analysis, a metabolic hormone assay and a gut microbiota analysis, associated with in vitro observations for different responses. We have highlighted a large number of effects of all these classes of molecules that suggest a pro-apoptotic activity, an anti-inflammatory, antimicrobial, antioxidant, hypolipidemic and hypoglycemic effect and also an important role in appetite regulation. A significant prebiotic activity was also identified. Fructose seems to be the most involved in these activities, contributing to approximately 83% of recorded responses, but the other classes of tested molecules have shown a specific role for these different effects, with an estimated contribution of 23-24%.


Assuntos
Cichorium intybus , Animais , Anti-Inflamatórios/metabolismo , Cichorium intybus/metabolismo , Ácido Clorogênico/metabolismo , Alimento Funcional , Humanos , Camundongos , Prebióticos/análise
13.
Antibiotics (Basel) ; 11(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36290046

RESUMO

ESKAPE pathogens are considered as global threats to human health. The discovery of new molecules for which these pathogens have not yet developed resistance is a high medical priority. Synthetic flavonoids are good candidates for developing new antimicrobials. Therefore, we report here the potent in vitro antibacterial activity of BrCl-flav, a representative of a new class of synthetic tricyclic flavonoids. Minimum inhibitory/bactericidal concentration, time kill and biofilm formation assays were employed to evaluate the antibacterial potential of BrCl-flav. The mechanism of action was investigated using fluorescence and scanning electron microscopy. A checkerboard assay was used to study the effect of the tested compound in combination with antibiotics. Our results showed that BrCl-flav displayed important inhibitory activity against all tested clinical isolates, with MICs ranging between 0.24 and 125 µg/mL. A total kill effect was recorded after only 1 h of exposing Enterococcus faecium cells to BrCl-flav. Additionally, BrCl-flav displayed important biofilm disruption potential against Acinetobacter baumannii. Those effects were induced by membrane integrity damage. BrCl-flav expressed synergistic activity in combination with penicillin against a MRSA strain. Based on the potent antibacterial activity, low cytotoxicity and pro-inflammatory effect, BrCl-flav has good potential for developing new effective drugs against ESKAPE pathogens.

14.
Foods ; 10(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34574245

RESUMO

The identification of phosphopeptides is currently a challenge when they are part of a complex matrix of peptides, such as a milk protein enzymatic hydrolysate. This challenge increases with both the number of phosphorylation sites on the phosphopeptides and their amino acid length. Here, this paper reports a four-phase strategy from an enzymatic casein hydrolysate before a mass spectrometry analysis in order to enhance the identification of phosphopeptides and phosphosites: (i) the control protein hydrolysate, (ii) a two-step enzymatic dephosphorylation of the latter, allowing for the almost total dephosphorylation of peptides, (iii) a one-step enzymatic dephosphorylation, allowing for the partial dephosphorylation of the peptides and (iv) an additional endoGluC enzymatic hydrolysis, allowing for the cleavage of long-size peptides into shorter ones. The reverse-phase high-pressure liquid chromatography-tandem mass spectrometry (RP-HPLC-MS/MS) analyses of hydrolysates that underwent this four-phase strategy allowed for the identification of 28 phosphorylation sites (90%) out of the 31 referenced in UniprotKB/Swiss-Prot (1 June 2021), compared to 17 sites (54%) without the latter. The alpha-S2 casein phosphosites, referenced by their similarity in the UniProt database, were experimentally identified, whereas pSer148, pThr166 and pSer187 from a multiphosphorylated long-size kappa-casein were not. Data are available via ProteomeXchange with identifier PXD027132.

15.
Front Nutr ; 8: 769773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127780

RESUMO

Several studies have demonstrated that high protein diets improve glucose homeostasis. Nevertheless, the mechanisms underlying this effect remain elusive. This exploratory study aims to screen and compare the acute effects of dietary proteins from different sources on intestinal glucose absorption. Six dietary proteins from various sources were thus selected and digested thanks to the INFOGEST static gastrointestinal digestion protocol. The digested proteins were able to decrease intestinal glucose absorption in vitro and ex vivo. Moreover, acute ingestion of casein and fish gelatin led to improved glucose tolerance in Wistar rats without significant effect on insulin secretion. In parallel, GLUT2 mRNA expression in enterocytes was decreased following short-term incubation with some of the digested proteins. These results strengthen the evidence that digested protein-derived peptides and amino acids are key regulators of glucose homeostasis and highlight their role in intestinal glucose absorption.

16.
J Sci Food Agric ; 90(11): 1819-26, 2010 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-20602518

RESUMO

BACKGROUND: Numerous studies have demonstrated that in vitro controlled enzymatic hydrolysis of fish and shellfish proteins leads to bioactive peptides. Ultrafiltration (UF) and/or nanofiltration (NF) can be used to refine hydrolysates and also to fractionate them in order to obtain a peptide population enriched in selected sizes. This study was designed to highlight the impact of controlled UF and NF on the stability of biological activities of an industrial fish protein hydrolysate (FPH) and to understand whether fractionation could improve its content in bioactive peptides. RESULTS: The starting fish protein hydrolysate exhibited a balanced amino acid composition, a reproducible molecular weight (MW) profile, and a low sodium chloride content, allowing the study of its biological activity. Successive fractionation on UF and NF membranes allowed concentration of peptides of selected sizes, without, however, carrying out sharp separations, some MW classes being found in several fractions. Peptides containing Pro, Hyp, Asp and Glu were concentrated in the UF and NF retentates compared to the unfractionated hydrolysate and UF permeate, respectively. Gastrin/cholecystokinin-like peptides were present in the starting FPH, UF and NF fractions, but fractionation did not increase their concentration. In contrast, quantification of calcitonin gene-related peptide (CGRP)-like peptides demonstrated an increase in CGRP-like activities in the UF permeate, relative to the starting FPH. The starting hydrolysate also showed a potent antioxidant and radical scavenging activity, and a moderate angiotensin-converting enzyme (ACE)-1 inhibitory activity, which were not increased by UF and NF fractionation. CONCLUSION: Fractionation of an FPH using membrane separation, with a molecular weight cut-off adapted to the peptide composition, may provide an effective means to concentrate CGRP-like peptides and peptides enriched in selected amino acids. The peptide size distribution observed after UF and NF fractionation demonstrates that it is misleading to characterize the fractions obtained by membrane filtration according to the MW cut-off of the membrane only, as is currently done in the literature.


Assuntos
Proteínas de Peixes/química , Gastrinas/isolamento & purificação , Peptídeos/isolamento & purificação , Aminoácidos/isolamento & purificação , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/isolamento & purificação , Colecistocinina/isolamento & purificação , Produtos Pesqueiros , Peixes , Hidrólise , Peso Molecular , Peptídeos/química , Peptídeos/farmacologia , Peptidil Dipeptidase A/isolamento & purificação , Peptidil Dipeptidase A/farmacologia , Ultrafiltração/métodos
17.
Nutrients ; 12(12)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291464

RESUMO

The gastrointestinal digestion of food proteins can generate peptides with a wide range of biological activities. In this study, we screened various potential bioactivities generated by plant-based proteins. Whey protein as an animal protein reference, five grades of pea protein, two grades of wheat protein, and potato, fava bean, and oat proteins were submitted to in vitro SGID. They were then tested in vitro for several bioactivities including measures on: (1) energy homeostasis through their ability to modulate intestinal hormone secretion, to inhibit DPP-IV activity, and to interact with opioid receptors; (2) anti-hypertensive properties through their ability to inhibit ACE activity; (3) anti-inflammatory properties in Caco-2 cells; (4) antioxidant properties through their ability to inhibit production of reactive oxygen species (ROS). Protein intestinal digestions were able to stimulate intestinal hormone secretion by enteroendocrine cells, to inhibit DPP-IV and ACE activities, to bind opioid receptors, and surprisingly, to decrease production of ROS. Neither pro- nor anti-inflammatory effects have been highlighted and some proteins lost their pro-inflammatory potential after digestion. The best candidates were pea, potato, and fava bean proteins.


Assuntos
Digestão/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Animais , Antioxidantes , Células CACO-2 , Citocinas/metabolismo , Dieta Vegetariana , Dipeptidil Peptidase 4/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Fabaceae , Peptídeo 1 Semelhante ao Glucagon , Humanos , Inflamação , Interleucina-8 , Intestinos , Programas de Rastreamento , Peptídeos/química , Peptidil Dipeptidase A/efeitos dos fármacos , Proteínas de Plantas/química , Hidrolisados de Proteína , Receptores Opioides , Proteínas do Soro do Leite
18.
Front Microbiol ; 11: 561060, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505362

RESUMO

Lipopeptide biosurfactants produced by Bacillus sp. were assessed regarding their antimicrobial activity against foodborne pathogenic and food spoilage microorganisms. Both Gram-positive and Gram-negative bacteria were found not to be susceptible to these lipopeptides. However, mycosubtilin and mycosubtilin/surfactin mixtures were very active against the filamentous fungi Paecilomyces variotti and Byssochlamys fulva, with minimum inhibitory concentrations (MICs) of 1-16 mg/L. They were also active against Candida krusei, MIC = 16-64 mg/L. Moreover it was found that the antifungal activity of these lipopeptides was not affected by differences in isoform composition and/or purity. Furthermore their cytotoxicity tested on two different cell lines mimicking ingestion and detoxification was comparable to those of approved food preservatives such as nisin. Overall, for the first time here mycosubtilin and mycosubtilin/surfactin mixtures were found to have high antifungal activity against food relevant fungi at concentrations lower than their toxicity level hence, suggesting their application for extending the shelf-life of products susceptible to these moulds. In addition combining nisin with mycosubtilin or mycosubtiliin/surfactin mixtures proved to be an effective approach to produce antimicrobials with broader spectrum of action.

19.
Foods ; 9(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143332

RESUMO

The goal of this study was to determine the impact of industrial processes on the digestion of six milk protein matrices using the harmonized INFOGEST in vitro static digestion protocol. First, this method was optimized to simple protein matrices using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography (SEC) to compare the intestinal protein hydrolysis obtained with increasing quantities of pancreatin. Similar results were achieved with the originally required pancreatin amount (trypsin activity of 100 U.mL-1) and with a quantity of pancreatin equivalent to a trypsin activity of 27.3 U.mL-1, which was thus used to perform the in vitro digestion of the milk matrices. Molecular weight profiles, peptide heterogeneity from LC-MS/MS data, calcium, free amino acid, and peptide concentrations were determined in the gastric and intestinal phases to compare the milk protein digests. Results showed that the industrial process affected not only the protein distribution of the matrices but also most likely the protein structures. Indeed, differences arose in terms of peptide populations generated when the caseins were reticulated or when their calcium concentrations were reduced.

20.
Data Brief ; 30: 105466, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32322618

RESUMO

The identification of non-fermentative Gram negative bacilli from run-off and spring water, including fluorescent Pseudomonas is very complex and investigations are needed to contribute to the systematic of these bacteria. In this dataset, the phenotypical profiles of three strains isolated from Vosges mountains first identified as Pseudomonas fluorescens were determined using APIⓇ 50 CH galleries. Then, the identification of their proteins released directly into water was carried out using tandem/mass spectrometry after separating proteins on native two-dimensional polyacrylamide gels. Finally, genotypic analysis data is presented, that illustrates biodiversity in this fluorescent bacterial group. This data is referred by a research article entitled "Fluorescent Pseudomonas strains from mid-mountain water able to release antioxidant proteins directly into water".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA