Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 620(7974): 651-659, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468627

RESUMO

Even among genetically identical cancer cells, resistance to therapy frequently emerges from a small subset of those cells1-7. Molecular differences in rare individual cells in the initial population enable certain cells to become resistant to therapy7-9; however, comparatively little is known about the variability in the resistance outcomes. Here we develop and apply FateMap, a framework that combines DNA barcoding with single-cell RNA sequencing, to reveal the fates of hundreds of thousands of clones exposed to anti-cancer therapies. We show that resistant clones emerging from single-cell-derived cancer cells adopt molecularly, morphologically and functionally distinct resistant types. These resistant types are largely predetermined by molecular differences between cells before drug addition and not by extrinsic factors. Changes in the dose and type of drug can switch the resistant type of an initial cell, resulting in the generation and elimination of certain resistant types. Samples from patients show evidence for the existence of these resistant types in a clinical context. We observed diversity in resistant types across several single-cell-derived cancer cell lines and cell types treated with a variety of drugs. The diversity of resistant types as a result of the variability in intrinsic cell states may be a generic feature of responses to external cues.


Assuntos
Antineoplásicos , Células Clonais , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Células Clonais/patologia , Código de Barras de DNA Taxonômico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , RNA-Seq , Análise da Expressão Gênica de Célula Única , Células Tumorais Cultivadas , Antineoplásicos/farmacologia
2.
Mol Cell ; 67(5): 757-769.e5, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28826673

RESUMO

Cell signaling networks coordinate specific patterns of protein expression in response to external cues, yet the logic by which signaling pathway activity determines the eventual abundance of target proteins is complex and poorly understood. Here, we describe an approach for simultaneously controlling the Ras/Erk pathway and monitoring a target gene's transcription and protein accumulation in single live cells. We apply our approach to dissect how Erk activity is decoded by immediate early genes (IEGs). We find that IEG transcription decodes Erk dynamics through a shared band-pass filtering circuit; repeated Erk pulses transcribe IEGs more efficiently than sustained Erk inputs. However, despite highly similar transcriptional responses, each IEG exhibits dramatically different protein-level accumulation, demonstrating a high degree of post-transcriptional regulation by combinations of multiple pathways. Our results demonstrate that the Ras/Erk pathway is decoded by both dynamic filters and logic gates to shape target gene responses in a context-specific manner.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/enzimologia , Genes Precoces , Proteínas Imediatamente Precoces/biossíntese , Transdução de Sinais , Transcrição Gênica , Proteínas ras/metabolismo , Animais , Simulação por Computador , Ativação Enzimática , Retroalimentação Fisiológica , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Proteínas Imediatamente Precoces/genética , Luz , Camundongos , Modelos Genéticos , Células NIH 3T3 , Optogenética , Fosforilação , Fator de Crescimento Derivado de Plaquetas/farmacologia , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Análise de Célula Única , Fatores de Tempo , Transcriptoma , Transfecção , Regulação para Cima
3.
Nucleic Acids Res ; 49(13): e74, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33877327

RESUMO

Double strand break (DSB) repair primarily occurs through 3 pathways: non-homologous end-joining (NHEJ), alternative end-joining (Alt-EJ), and homologous recombination (HR). Typical methods to measure pathway usage include integrated cassette reporter assays or visualization of DNA damage induced nuclear foci. It is now well understood that repair of Cas9-induced breaks also involves NHEJ, Alt-EJ, and HR pathways, providing a new format to measure pathway usage. Here, we have developed a simple Cas9-based system with validated repair outcomes that accurately represent each pathway and then converted it to a droplet digital PCR (ddPCR) readout, thus obviating the need for Next Generation Sequencing and bioinformatic analysis with the goal to make Cas9-based system accessible to more laboratories. The assay system has reproduced several important insights. First, absence of the key Alt-EJ factor Pol θ only abrogates ∼50% of total Alt-EJ. Second, single-strand templated repair (SSTR) requires BRCA1 and MRE11 activity, but not BRCA2, establishing that SSTR commonly used in genome editing is not conventional HR. Third, BRCA1 promotes Alt-EJ usage at two-ended DSBs in contrast to BRCA2. This assay can be used in any system, which permits Cas9 delivery and, importantly, allows rapid genotype-to-phenotype correlation in isogenic cell line pairs.


Assuntos
Reparo do DNA por Junção de Extremidades , Reação em Cadeia da Polimerase , Reparo de DNA por Recombinação , Proteína BRCA1/fisiologia , Proteína BRCA2/fisiologia , Proteína 9 Associada à CRISPR , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Loci Gênicos , Humanos , Transfecção
4.
Proc Natl Acad Sci U S A ; 116(43): 21573-21579, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591214

RESUMO

Squamous cell carcinomas (SCCs) arising from aerodigestive or anogenital epithelium that are associated with the human papillomavirus (HPV) are far more readily cured with radiation therapy than HPV-negative SCCs. The mechanism behind this increased radiosensitivity has been proposed to be secondary to defects in DNA repair, although the specific repair pathways that are disrupted have not been elucidated. To gain insight into this important biomarker of radiosensitivity, we first examined genomic patterns reflective of defects in DNA double-strand break repair, comparing HPV-associated and HPV-negative head and neck cancers (HNSCC). Compared to HPV-negative HNSCC genomes, HPV+ cases demonstrated a marked increase in the proportion of deletions with flanking microhomology, a signature associated with a backup, error-prone double-strand break repair pathway known as microhomology-mediated end-joining (MMEJ). Then, using 3 different methodologies to comprehensively profile double-strand break repair pathways in isogenic paired cell lines, we demonstrate that the HPV16 E7 oncoprotein suppresses canonical nonhomologous end-joining (NHEJ) and promotes error-prone MMEJ, providing a mechanistic rationale for the clinical radiosensitivity of these cancers.


Assuntos
Reparo do DNA por Junção de Extremidades/genética , Neoplasias de Cabeça e Pescoço/genética , Papillomavirus Humano 16/genética , Proteínas E7 de Papillomavirus/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Linhagem Celular , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Epitélio/patologia , Epitélio/virologia , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia
5.
bioRxiv ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39091739

RESUMO

Cellular responses to environmental stimuli are typically thought to be governed by genetically encoded programs. We demonstrate that melanoma cells can form and maintain cellular memories during the acquisition of therapy resistance that exhibit characteristics of cellular learning and are dependent on the transcription factor AP-1. We show that cells exposed to a low dose of therapy adapt to become resistant to a high dose, demonstrating that resistance was not purely selective. The application of therapy itself results in the encoding of transient gene expression into cellular memory and that this encoding occurs for both transiently induced and probabilistically arising expression. Chromatin accessibility showed concomitant persistence. A two-color AP-1 reporter system showed that these memories are encoded in cis, constituting an example of activating cis epigenetics. Our findings establish the formation and maintenance of cellular memories as a critical aspect of gene regulation during the development of therapy resistance.

6.
Cell Syst ; 13(2): 131-142.e13, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34739875

RESUMO

Cells employ intracellular signaling pathways to sense and respond to changes in their external environment. In recent years, live-cell biosensors have revealed complex pulsatile dynamics in many pathways, but studies of these signaling dynamics are limited by the necessity of live-cell imaging at high spatiotemporal resolution. Here, we describe an approach to infer pulsatile signaling dynamics from a single measurement in fixed cells using a pulse-detecting gene circuit. We computationally screened for circuits with the capability to selectively detect signaling pulses, revealing an incoherent feedforward topology that robustly performs this computation. We implemented the motif experimentally for the Erk signaling pathway using a single engineered transcription factor and fluorescent protein reporter. Our "recorder of Erk activity dynamics" (READer) responds sensitively to spontaneous and stimulus-driven Erk pulses. READer circuits open the door to permanently labeling transient, dynamic cell populations to elucidate the mechanistic underpinnings and biological consequences of signaling dynamics.


Assuntos
Redes Reguladoras de Genes , Genes Sintéticos , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Sistema de Sinalização das MAP Quinases , Transdução de Sinais/genética
7.
Sci Adv ; 7(52): eabk0161, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936466

RESUMO

The function of the lung is closely coupled to its structural anatomy, which varies greatly across vertebrates. Although architecturally simple, a complex pattern of airflow is thought to be achieved in the lizard lung due to its cavernous central lumen and honeycomb-shaped wall. We find that the wall of the lizard lung is generated from an initially smooth epithelial sheet, which is pushed through holes in a hexagonal smooth muscle meshwork by forces from fluid pressure, similar to a stress ball. Combining transcriptomics with time-lapse imaging reveals that the hexagonal meshwork self-assembles in response to circumferential and axial stresses downstream of pressure. A computational model predicts the pressure-driven changes in epithelial topology, which we probe using optogenetically driven contraction of 3D-printed engineered muscle. These results reveal the physical principles used to sculpt the unusual architecture of the lizard lung, which could be exploited as a novel strategy to engineer tissues.

8.
Commun Biol ; 3(1): 436, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792645

RESUMO

Many cell- and tissue-level functions are coordinated by intracellular signaling pathways that trigger the expression of context-specific target genes. Yet the input-output relationships that link pathways to the genes they activate are incompletely understood. Mapping the pathway-decoding logic of natural target genes could also provide a basis for engineering novel signal-decoding circuits. Here we report the construction of synthetic immediate-early genes (SynIEGs), target genes of Erk signaling that implement complex, user-defined regulation and can be monitored by using live-cell biosensors to track their transcription and translation. We demonstrate the power of this approach by confirming Erk duration-sensing by FOS, elucidating how the BTG2 gene is differentially regulated by external stimuli, and designing a synthetic immediate-early gene that selectively responds to the combination of growth factor and DNA damage stimuli. SynIEGs pave the way toward engineering molecular circuits that decode signaling dynamics and combinations across a broad range of cellular contexts.


Assuntos
Genes Precoces , Genes Sintéticos , Engenharia Genética , Animais , Dano ao DNA , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Cinética , Camundongos , Mitógenos/farmacologia , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos
9.
Nat Commun ; 11(1): 4044, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792536

RESUMO

A growing number of optogenetic tools have been developed to reversibly control binding between two engineered protein domains. In contrast, relatively few tools confer light-switchable binding to a generic target protein of interest. Such a capability would offer substantial advantages, enabling photoswitchable binding to endogenous target proteins in cells or light-based protein purification in vitro. Here, we report the development of opto-nanobodies (OptoNBs), a versatile class of chimeric photoswitchable proteins whose binding to proteins of interest can be enhanced or inhibited upon blue light illumination. We find that OptoNBs are suitable for a range of applications including reversibly binding to endogenous intracellular targets, modulating signaling pathway activity, and controlling binding to purified protein targets in vitro. This work represents a step towards programmable photoswitchable regulation of a wide variety of target proteins.


Assuntos
Optogenética/métodos , Biologia Sintética/métodos , Animais , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Ligação Proteica , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia
10.
ACS Chem Biol ; 15(10): 2752-2765, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32880430

RESUMO

Light-activated protein domains provide a convenient, modular, and genetically encodable sensor for optogenetics and optobiology. Although these domains have now been deployed in numerous systems, the precise mechanism of photoactivation and the accompanying structural dynamics that modulate output domain activity remain to be fully elucidated. In the C-terminal light-oxygen-voltage (LOV) domain of plant phototropins (LOV2), blue light activation leads to formation of an adduct between a conserved Cys residue and the embedded FMN chromophore, rotation of a conserved Gln (Q513), and unfolding of a helix (Jα-helix) which is coupled to the output domain. In the present work, we focus on the allosteric pathways leading to Jα helix unfolding in Avena sativa LOV2 (AsLOV2) using an interdisciplinary approach involving molecular dynamics simulations extending to 7 µs, time-resolved infrared spectroscopy, solution NMR spectroscopy, and in-cell optogenetic experiments. In the dark state, the side chain of N414 is hydrogen bonded to the backbone N-H of Q513. The simulations predict a lever-like motion of Q513 after Cys adduct formation resulting in a loss of the interaction between the side chain of N414 and the backbone C═O of Q513, and formation of a transient hydrogen bond between the Q513 and N414 side chains. The central role of N414 in signal transduction was evaluated by site-directed mutagenesis supporting a direct link between Jα helix unfolding dynamics and the cellular function of the Zdk2-AsLOV2 optogenetic construct. Through this multifaceted approach, we show that Q513 and N414 are critical mediators of protein structural dynamics, linking the ultrafast (sub-ps) excitation of the FMN chromophore to the microsecond conformational changes that result in photoreceptor activation and biological function.


Assuntos
Avena/química , Glutamina/química , Fototropinas/metabolismo , Desdobramento de Proteína/efeitos da radiação , Mononucleotídeo de Flavina/metabolismo , Ligação de Hidrogênio , Luz , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Optogenética , Fototropinas/genética , Fototropinas/efeitos da radiação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Multimerização Proteica/efeitos da radiação
11.
Trends Cancer ; 4(10): 657-659, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30292348

RESUMO

Live-cell microscopy has revealed that signaling pathways carry elaborate time-varying activities. Yet, the connection between these dynamics and cellular disease has remained elusive. Recent work leverages cellular optogenetics to analyze the Ras-to-Erk transfer function in cancer cells. These analyses reveal how changes to the filtering properties of a pathway lead to the misperception of extracellular events. Overall, these studies suggest that mutations do not simply hyperactivate pathways but rather can also change their transmission properties in more subtle ways.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias , Humanos , Mutação , Optogenética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA