Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Am Chem Soc ; 144(19): 8756-8769, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35508182

RESUMO

Here, we show how signal amplification by reversible exchange hyperpolarization of a range of 15N-containing synthons can be used to enable studies of their reactivity by 15N nuclear magnetic resonance (NO2- (28% polarization), ND3 (3%), PhCH2NH2 (5%), NaN3 (3%), and NO3- (0.1%)). A range of iridium-based spin-polarization transfer catalysts are used, which for NO2- work optimally as an amino-derived carbene-containing complex with a DMAP-d2 coligand. We harness long 15N spin-order lifetimes to probe in situ reactivity out to 3 × T1. In the case of NO2- (T1 17.7 s at 9.4 T), we monitor PhNH2 diazotization in acidic solution. The resulting diazonium salt (15N-T1 38 s) forms within 30 s, and its subsequent reaction with NaN3 leads to the detection of hyperpolarized PhN3 (T1 192 s) in a second step via the formation of an identified cyclic pentazole intermediate. The role of PhN3 and NaN3 in copper-free click chemistry is exemplified for hyperpolarized triazole (T1 < 10 s) formation when they react with a strained alkyne. We also demonstrate simple routes to hyperpolarized N2 in addition to showing how utilization of 15N-polarized PhCH2NH2 enables the probing of amidation, sulfonamidation, and imine formation. Hyperpolarized ND3 is used to probe imine and ND4+ (T1 33.6 s) formation. Furthermore, for NO2-, we also demonstrate how the 15N-magnetic resonance imaging monitoring of biphasic catalysis confirms the successful preparation of an aqueous bolus of hyperpolarized 15NO2- in seconds with 8% polarization. Hence, we create a versatile tool to probe organic transformations that has significant relevance for the synthesis of future hyperpolarized pharmaceuticals.


Assuntos
Imageamento por Ressonância Magnética , Dióxido de Nitrogênio , Iminas , Espectroscopia de Ressonância Magnética/métodos , Nitrogênio
2.
Magn Reson Med ; 88(1): 11-27, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35253267

RESUMO

PURPOSE: Enabling drug tracking (distribution/specific pathways) with magnetic resonance spectroscopy requires manipulation (via hyperpolarization) of spin state populations and targets with sufficiently long magnetic lifetimes to give the largest possible window of observation. Here, we demonstrate how the proton resonances of a group of thienopyridazines (with known anticancer properties), can be amplified using the para-hydrogen (p-H2 ) based signal amplification by reversible exchange (SABRE) hyperpolarization technique. METHODS: Thienopyridazine isomers, including a 2 H version, were synthesized in house. Iridium-based catalysts dissolved in a methanol-d4 solvent facilitated polarization transfer from p-H2 gas to the target thienopyridazines. Subsequent SABRE 1 H responses of hyperpolarized thienopyridazines were completed (400 MHz NMR). Pseudo-singlet state approaches were deployed to extend magnetic state lifetimes. Proof of principle spectral-spatial images were acquired across a range of field strengths (7T-9.4T MRI). RESULTS: 1 H-NMR signal enhancements of -10,130-fold at 9.4T (~33% polarization) were achieved on thieno[2,3-d]pyridazine (T[2,3-d]P), using SABRE under optimal mixing/field transfer conditions. 1 H T1 lifetimes for the thienopyridazines were ~18-50 s. Long-lived state approaches extended the magnetic lifetime of target proton sites in T[2,3-d]P from an average of 25-40 seconds. Enhanced in vitro imaging (spatial and chemical shift based) of target T[2,3-d]P was demonstrated. CONCLUSION: Here, we demonstrate the power of SABRE to deliver a fast and cost-effective route to hyperpolarization of important chemical motifs of anticancer agents. The SABRE approach outlined here lays the foundations for realizing continuous flow, hyperpolarized tracking of drug delivery/pathways.


Assuntos
Antineoplásicos , Prótons , Hidrogênio/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos
3.
Magn Reson Chem ; 59(12): 1187-1198, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33729592

RESUMO

Utility of the pyridazine motif is growing in popularity as pharmaceutical and agrochemical agents. The detection and structural characterisation of such materials is therefore imperative for the successful development of new products. Signal amplification by reversible exchange (SABRE) offers a route to dramatically improve the sensitivity of magnetic resonance methods, and we apply it here to the rapid and cost-effective hyperpolarisation of substituted pyridazines. The 33 substrates investigated cover a range of steric and electronic properties and their capacity to perform highly effective SABRE is assessed. We find the method to be tolerant to a broad range of electron donating and withdrawing groups; however, good sensitivity is evident when steric bulk is added to the 3- and 6-positions of the pyridazine ring. We optimise the method by reference to a disubstituted ester that yields signal gains of >9000-fold at 9.4 T (>28% spin polarisation).

4.
Anal Chem ; 92(13): 9095-9103, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510200

RESUMO

Signal amplification by reversible exchange (SABRE) is a hyperpolarization technique that uses a metal complex to catalytically transfer magnetization from parahydrogen to molecules of interest. SABRE is used here to monitor the decarboxylation of sodium pyruvate-1,2-[13C2] at a 15 mM concentration to form ethanoic acid and CO2 upon reaction with hydrogen peroxide (150 mM). The rate constant of this reaction is determined by hyperpolarized 13C SABRE-NMR spectroscopy as 0.056 ± 0.003 dm3 mol-1 s-1 at 298 K and is comparable to that determined from thermal 1H NMR (k = 0.050 ± 0.003 dm3 mol-1 s-1) and UV measurements (k = 0.053 ± 0.001 dm3 mol-1 s-1). The hyperpolarized reaction intermediate 2-hydroperoxy-2-hydroxypropanoate is detected in a single scan hyperpolarized 13C NMR spectrum. This work highlights how SABRE hyperpolarization can be used as a tool for the precise monitoring of chemical transformations by hyperpolarized NMR spectroscopy.

5.
J Chem Phys ; 152(1): 014201, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914733

RESUMO

Signal Amplification by Reversible Exchange (SABRE) is an inexpensive and simple hyperpolarization technique that is capable of boosting nuclear magnetic resonance sensitivity by several orders of magnitude. It utilizes the reversible binding of para-hydrogen, as hydride ligands, and a substrate of interest to a metal catalyst to allow for polarization transfer from para-hydrogen into substrate nuclear spins. While the resulting nuclear spin populations can be dramatically larger than those normally created, their lifetime sets a strict upper limit on the experimental timeframe. Consequently, short nuclear spin lifetimes are a challenge for hyperpolarized metabolic imaging. In this report, we demonstrate how both hyperpolarization and long nuclear spin lifetime can be simultaneously achieved in nitrogen-15 containing derivatives of pyridazine and phthalazine by SABRE. These substrates were chosen to reflect two distinct classes of 15N2-coupled species that differ according to their chemical symmetry and thereby achieve different nuclear spin lifetimes. The pyridazine derivative proves to exhibit a signal lifetime of ∼2.5 min and can be produced with a signal enhancement of ∼2700. In contrast, while the phthalazine derivative yields a superior 15 000-fold 15N signal enhancement at 11.7 T, it has a much shorter signal lifetime.

6.
Proc Natl Acad Sci U S A ; 114(16): E3188-E3194, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28377523

RESUMO

Hyperpolarization turns typically weak NMR and MRI responses into strong signals so that ordinarily impractical measurements become possible. The potential to revolutionize analytical NMR and clinical diagnosis through this approach reflect this area's most compelling outcomes. Methods to optimize the low-cost parahydrogen-based approach signal amplification by reversible exchange with studies on a series of biologically relevant nicotinamides and methyl nicotinates are detailed. These procedures involve specific 2H labeling in both the agent and catalyst and achieve polarization lifetimes of ca 2 min with 50% polarization in the case of methyl-4,6-d2 -nicotinate. Because a 1.5-T hospital scanner has an effective 1H polarization level of just 0.0005% this strategy should result in compressed detection times for chemically discerning measurements that probe disease. To demonstrate this technique's generality, we exemplify further studies on a range of pyridazine, pyrimidine, pyrazine, and isonicotinamide analogs that feature as building blocks in biochemistry and many disease-treating drugs.

7.
Angew Chem Int Ed Engl ; 59(7): 2710-2714, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31833623

RESUMO

Silanols and silanes are key precursors and intermediates for the synthesis of silicon-based materials. While their characterization and quantification by 29 Si NMR spectroscopy has received significant attention, it is a technique that is limited by the low natural abundance of 29 Si and its low sensitivity. Here, we describe a method using p-H2 to hyperpolarize 29 Si. The observed signal enhancements, approaching 3000-fold at 11.7 T, would take many days of measurement for comparable results under Boltzmann conditions. The resulting signals were exploited to monitor the rapid reaction of tris(tert-butoxy)silanol with triflic anhydride in a T1 -corrected process that allows for rapid quantification. These results demonstrate a novel route to quantify dynamic processes and intermediates in the synthesis of silicon materials.

8.
Chemphyschem ; 20(2): 285-294, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30395699

RESUMO

The hyperpolarization technique, Signal Amplification by Reversible Exchange (SABRE), has the potential to improve clinical diagnosis by making molecular magnetic resonance imaging in vivo a reality. Essential to this goal is the ability to produce a biocompatible bolus for administration. We seek here to determine how the identity of the catalyst and substrate affects the cytotoxicity by in vitro study, in addition to reporting how the use of biocompatible solvent mixtures influence the polarization transfer efficiency. By illustrating this across five catalysts and 8 substrates, we are able to identify routes to produce a bolus with minimal cytotoxic effects.


Assuntos
Materiais Biocompatíveis/química , Antituberculosos/química , Antituberculosos/farmacologia , Materiais Biocompatíveis/metabolismo , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Deutério/química , Humanos , Irídio/química , Isoniazida/química , Isoniazida/farmacologia , Metano/análogos & derivados , Metano/química , Pirazinamida/química , Pirazinamida/farmacologia , Especificidade por Substrato
9.
Glob Chang Biol ; 24(9): 3954-3968, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29665215

RESUMO

Net biome productivity (NBP) dominates the observed large variation of atmospheric CO2 annual increase over the last five decades. However, the dominant regions controlling inter-annual to multi-decadal variability of global NBP are still controversial (semi-arid regions vs. temperate or tropical forests). By developing a theory for partitioning the variance of NBP into the contributions of net primary production (NPP) and heterotrophic respiration (Rh ) at different timescales, and using both observation-based atmospheric CO2 inversion product and the outputs of 10 process-based terrestrial ecosystem models forced by 110-year observational climate, we tried to reconcile the controversy by showing that semi-arid lands dominate the variability of global NBP at inter-annual (<10 years) and tropical forests dominate at multi-decadal scales (>30 years). Results further indicate that global NBP variability is dominated by the NPP component at inter-annual timescales, and is progressively controlled by Rh with increasing timescale. Multi-decadal NBP variations of tropical rainforests are modulated by the Pacific Decadal Oscillation (PDO) through its significant influences on both temperature and precipitation. This study calls for long-term observations for the decadal or longer fluctuations in carbon fluxes to gain insights on the future evolution of global NBP, particularly in the tropical forests that dominate the decadal variability of land carbon uptake and are more effective for climate mitigation.


Assuntos
Sequestro de Carbono , Ciclo do Carbono , Dióxido de Carbono , Clima Desértico , Ecossistema , Florestas , Modelos Teóricos , Floresta Úmida , Temperatura , Tempo
10.
Phys Chem Chem Phys ; 20(41): 26362-26371, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30303501

RESUMO

para-Hydrogen (p-H2) induced polarisation (PHIP) is an increasingly popular method for sensitivity enhancement in NMR spectroscopy. Its growing popularity is due in part to the introduction of the signal amplification by reversible exchange (SABRE) method that generates renewable hyperpolarisation in target analytes in seconds. A key benefit of PHIP and SABRE is that p-H2 can be relatively easily and cheaply produced, with costs increasing with the desired level of p-H2 purity. In this work, the efficiency of the SABRE polarisation transfer is explored by measuring the level of analyte hyperpolarisation as a function of the level of p-H2 enrichment. A linear relationship was found between p-H2 enrichment and analyte 1H hyperpolarisation for a range of molecules, polarisation transfer catalysts, NMR detection fields and for both the SABRE and SABRE-Relay transfer mechanisms over the range 29-99% p-H2 purity. The gradient of these linear relationships were related to a simple theoretical model to define an overall efficiency parameter, E, that quantifies the net fraction of the available p-H2 polarisation that is transferred to the target analyte. We find that the efficiency of SABRE is independent of the NMR detection field and exceeds E = 20% for methyl-4,6-d2-nicotinate when using a previously optimised catalyst system. For the SABRE-Relay transfer mechanism, efficiencies of up to E = 1% were found for 1H polarisation of 1-propanol, when ammonia was used as the polarisation carrier.

11.
Magn Reson Chem ; 56(7): 663-671, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29274294

RESUMO

By introducing a range of 2 H labels into pyridine and the para-substituted agents, methyl isonicotinate and isonicotinamide, we significantly improve their NMR detectability in conjunction with the signal amplification by reversible exchange process. We describe how the rates of T1 relaxation for the remaining 1 H nuclei are increased and show how this leads to a concomitant increase in the level of 1 H and 13 C hyperpolarization that can ultimately be detected.

12.
Angew Chem Int Ed Engl ; 57(23): 6742-6753, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29316071

RESUMO

Signal amplification by reversible exchange (SABRE) turns typically weak magnetic resonance responses into strong signals making previously impractical measurements possible. This technique has gained significant popularity because of its speed and simplicity. This Minireview tracks the development of SABRE from the initial hyperpolarization of pyridine in 2009 to the point in which 50 % 1 H polarization levels have been achieved in a di-deuterio-nicotinate, a key step in the pathway to potential clinical use. Simple routes to highly efficient 15 N hyperpolarization and the creation of hyperpolarized long-lived magnetic states are illustrated. To conclude, we describe how the recently reported SABRE-RELAY approach offers a route for parahydrogen to hyperpolarize a much wider array of molecular scaffolds, such as amides, alcohols, carboxylic acids, and phosphates, than was previously thought possible. We predict that collectively these developments ensure that SABRE will significantly impact on both chemical analysis and the diagnosis of disease in the future.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Álcoois/química , Amidas/química , Ácidos Carboxílicos/química , Catálise , Humanos , Hidrogênio/química , Niacina/química , Fosfatos/química , Piridinas/química
13.
Chemistry ; 23(67): 16990-16997, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990279

RESUMO

Despite the successful use of isoniazid, rifampicin, pyrazinamide and ethambutol in the treatment of tuberculosis (TB), it is a disease of growing global concern. We illustrate here a series of methods that will dramatically improve the magnetic resonance imaging (MRI) detectability of nineteen TB-relevant agents. We note that the future probing of their uptake and distribution in vivo would be expected to significantly enhance their efficacy in disease treatment. This improvement in detectability is achieved by use of the parahydrogen based SABRE protocol in conjunction with the 2 H-labelling of key sites within their molecular structures and the 2 H-labelling of the magnetization transfer catalyst. The T1 relaxation times and polarization levels of these agents are quantified under test conditions to produce a protocol to identify structurally optimized motifs for future detection. For example, deuteration of the 6-position of a pyrazinamide analogue leads to a structural form that exhibits T1 values of 144.5 s for 5-H with up to 20 % polarization. This represents a >7-fold extension in relaxation time and almost 10-fold improvement in polarization level when compared to its unoptimized structure.


Assuntos
Antituberculosos/química , Deutério , Etambutol/química , Isoniazida/química , Espectroscopia de Ressonância Magnética , Pirazinamida/química , Rifampina/química
14.
Chemistry ; 23(44): 10496-10500, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28627764

RESUMO

Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) suffer from low sensitivity and limited nuclear spin memory lifetimes. Although hyperpolarization techniques increase sensitivity, there is also a desire to increase relaxation times to expand the range of applications addressable by these methods. Here, we demonstrate a route to create hyperpolarized magnetization in 13 C nuclear spin pairs that last much longer than normal lifetimes by storage in a singlet state. By combining molecular design and low-field storage with para-hydrogen derived hyperpolarization, we achieve more than three orders of signal amplification relative to equilibrium Zeeman polarization and an order of magnitude extension in state lifetime. These studies use a range of specifically synthesized pyridazine derivatives and dimethyl p-tolyl phenyl pyridazine is the most successful, achieving a lifetime of about 190 s in low-field, which leads to a 13 C-signal that is visible for 10 minutes.

15.
Magn Reson Chem ; 55(10): 944-957, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28497481

RESUMO

The signal amplification by reversible exchange (SABRE) approach has been used to hyperpolarise the substrates indazole and imidazole in the presence of the co-ligand acetonitrile through the action of the precataysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)]. 2 H-labelled forms of these catalysts were also examined. Our comparison of the two precatalysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)], coupled with 2 H labelling of the N-heterocyclic carbene and associated relaxation and polarisation field variation studies, demonstrates the critical and collective role these parameters play in controlling the efficiency of signal amplification by reversible exchange. Ultimately, with imidazole, a 700-fold1 H signal gain per proton is produced at 400 MHz, whilst for indazole, a 90-fold increase per proton is achieved. The co-ligand acetonitrile proved to optimally exhibit a 190-fold signal gain per proton in these measurements, with the associated studies revealing the importance the substrate plays in controlling this value. Copyright © 2017 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

16.
Phys Chem Chem Phys ; 18(36): 24905-24911, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711398

RESUMO

The applicability of the magnetic resonance (MR) technique in the liquid phase is limited by poor sensitivity and short nuclear spin coherence times which are insufficient for many potential applications. Here we illustrate how it is possible to address both of these issues simultaneously by harnessing long-lived hyperpolarised spin states that are formed by adapting the Signal Amplification by Reversible Exchange (SABRE) technique. We achieve more than 4% net 1H-polarisation in a long-lived form that remains detectable for over ninety seconds by reference to proton pairs in the biologically important molecule nicotinamide and a pyrazine derivative whose in vivo imaging will offer a new route to probe disease in the future.

17.
Angew Chem Int Ed Engl ; 55(50): 15642-15645, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27862799

RESUMO

Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are two extremely important techniques with applications ranging from molecular structure determination to human imaging. However, in many cases the applicability of NMR and MRI are limited by inherently poor sensitivity and insufficient nuclear spin lifetime. Here we demonstrate a cost-efficient and fast technique that tackles both issues simultaneously. We use the signal amplification by reversible exchange (SABRE) technique to hyperpolarize the target 1 H nuclei and store this polarization in long-lived singlet (LLS) form after suitable radiofrequency (rf) pulses. Compared to the normal scenario, we achieve three orders of signal enhancement and one order of lifetime extension, leading to 1 H NMR signal detection 15 minutes after the creation of the detected states. The creation of such hyperpolarized long-lived polarization reflects an important step forward in the pipeline to see such agents used as clinical probes of disease.

18.
Org Biomol Chem ; 12(21): 3499-512, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24759885

RESUMO

A synthetic study on the preparation of N-Boc α-amino sulfoxides has revealed an unexpected instability which is believed to be due to α-elimination of the sulfoxide to give an iminium ion. Full synthetic details are reported on two main synthetic routes: lithiation and sulfinate trapping of N-Boc heterocycles and oxidation of N-Boc α-amino sulfides. Six novel α-amino sulfoxides were successfully prepared and isolated. It is speculated that four other α-amino sulfoxides were synthesised but could not be isolated due to their propensity to α-eliminate the sulfoxide. Ultimately, a stable, cyclic N-Boc α-amino sulfoxide was prepared and this successful synthesis relied on the α-amino sulfoxide being part of a bicyclic [3.1.0] fused ring system that could not undergo α-elimination of the sulfoxide.


Assuntos
Sulfóxidos/síntese química , Oxirredução , Sulfetos/química , Sulfonas/química , Sulfóxidos/química
19.
ACS Catal ; 14(2): 994-1004, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38269038

RESUMO

The neutral catalysts [IrCl(H)2(NHC)(substrate)2] or [IrCl(H)2(NHC)(substrate)(sulfoxide)] are used to transfer polarization from para hydrogen (pH2) to 3,5-dichloropyridine and 3,5-dibromopyridine substrates. This is achieved in a rapid, reversible, and low-cost process that relies on ligand exchange within the active catalyst. Notably, the sulfoxide-containing catalyst systems produced NMR signal enhancements between 1 and 2 orders of magnitude larger than its unmodified counterpart. Consequently, this signal amplification by reversible exchange hyperpolarization method can boost the 1H, 13C, and 15N nuclear magnetic resonance (NMR) signal intensities by factors up to 4350, 1550, and 46,600, respectively (14.0, 1.3, and 15.4% polarization). In this paper, NMR and X-ray crystallography are used to map the evolution of catalytically important species and provide mechanistic rational for catalytic efficiency. Furthermore, applications in spontaneous radiofrequency amplification by stimulated emission and NMR reaction monitoring are also shown.

20.
J Am Chem Soc ; 135(21): 8071-7, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23647498

RESUMO

A strategy for the generation of enantiomerically pure α-functionalized chiral Grignard reagents is presented. The approach involves the synthesis of α-alkoxy and α-amino sulfoxides in ≥99:1 dr and ≥99:1 er via asymmetric deprotonation (s-BuLi/chiral diamine) and trapping with Andersen's sulfinate (menthol derived). Subsequent sulfoxide → Mg exchange (room temperature, 1 min) and electrophilic trapping delivers a range of enantiomerically pure α-alkoxy and α-amino substituted products. Using this approach, either enantiomer of products can be accessed in 99:1 er from asymmetric deprotonation protocols without the use of (-)-sparteine as the chiral ligand. Two additional discoveries are noteworthy: (i) for the deprotonation and trapping with Andersen's sulfinate, there is a lack of stereospecificity at sulfur due to attack of a lithiated intermediate onto the α-alkoxy and α-amino sulfoxides as they form, and (ii) the α-alkoxy-substituted Grignard reagent is configurationally stable at room temperature for 30 min.


Assuntos
Indicadores e Reagentes/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA