RESUMO
Precision health mapping is a technique that uses spatial relationships between socio-ecological variables and disease to map the spatial distribution of disease, particularly for diseases with strong environmental signatures, such as diarrhoeal disease (DD). While some studies use GPS-tagged location data, other precision health mapping efforts rely heavily on data collected at coarse-spatial scales and may not produce operationally relevant predictions at fine enough spatio-temporal scales to inform local health programmes. We use two fine-scale health datasets collected in a rural district of Madagascar to identify socio-ecological covariates associated with childhood DD. We constructed generalized linear mixed models including socio-demographic, climatic and landcover variables and estimated variable importance via multi-model inference. We find that socio-demographic variables, and not environmental variables, are strong predictors of the spatial distribution of disease risk at both individual and commune-level (cluster of villages) spatial scales. Climatic variables predicted strong seasonality in DD, with the highest incidence in colder, drier months, but did not explain spatial patterns. Interestingly, the occurrence of a national holiday was highly predictive of increased DD incidence, highlighting the need for including cultural factors in modelling efforts. Our findings suggest that precision health mapping efforts that do not include socio-demographic covariates may have reduced explanatory power at the local scale. More research is needed to better define the set of conditions under which the application of precision health mapping can be operationally useful to local public health professionals.
Assuntos
Diarreia , Criança , Diarreia/epidemiologia , Humanos , Incidência , Modelos Lineares , Madagáscar/epidemiologia , Fatores de RiscoRESUMO
BACKGROUND: Reliable surveillance systems are essential for identifying disease outbreaks and allocating resources to ensure universal access to diagnostics and treatment for endemic diseases. Yet, most countries with high disease burdens rely entirely on facility-based passive surveillance systems, which miss the vast majority of cases in rural settings with low access to health care. This is especially true for malaria, for which the World Health Organization estimates that routine surveillance detects only 14% of global cases. The goal of this study was to develop a novel method to obtain accurate estimates of disease spatio-temporal incidence at very local scales from routine passive surveillance, less biased by populations' financial and geographic access to care. METHODS: We use a geographically explicit dataset with residences of the 73,022 malaria cases confirmed at health centers in the Ifanadiana District in Madagascar from 2014 to 2017. Malaria incidence was adjusted to account for underreporting due to stock-outs of rapid diagnostic tests and variable access to healthcare. A benchmark multiplier was combined with a health care utilization index obtained from statistical models of non-malaria patients. Variations to the multiplier and several strategies for pooling neighboring communities together were explored to allow for fine-tuning of the final estimates. Separate analyses were carried out for individuals of all ages and for children under five. Cross-validation criteria were developed based on overall incidence, trends in financial and geographical access to health care, and consistency with geographic distribution in a district-representative cohort. The most plausible sets of estimates were then identified based on these criteria. RESULTS: Passive surveillance was estimated to have missed about 4 in every 5 malaria cases among all individuals and 2 out of every 3 cases among children under five. Adjusted malaria estimates were less biased by differences in populations' financial and geographic access to care. Average adjusted monthly malaria incidence was nearly four times higher during the high transmission season than during the low transmission season. By gathering patient-level data and removing systematic biases in the dataset, the spatial resolution of passive malaria surveillance was improved over ten-fold. Geographic distribution in the adjusted dataset revealed high transmission clusters in low elevation areas in the northeast and southeast of the district that were stable across seasons and transmission years. CONCLUSIONS: Understanding local disease dynamics from routine passive surveillance data can be a key step towards achieving universal access to diagnostics and treatment. Methods presented here could be scaled-up thanks to the increasing availability of e-health disease surveillance platforms for malaria and other diseases across the developing world.
Assuntos
Sistemas de Informação em Saúde , Malária , Criança , Acessibilidade aos Serviços de Saúde , Humanos , Incidência , Malária/diagnóstico , Malária/epidemiologia , Estações do AnoRESUMO
BACKGROUND: In order to reach the health-related Sustainable Development Goals (SDGs) by 2030, gains attained in access to primary healthcare must be matched by gains in the quality of services delivered. Despite the broad consensus around the need to address quality, studies on the impact of health system strengthening (HSS) have focused predominantly on measures of healthcare access. Here, we examine changes in the content of maternal and child care as a proxy for healthcare quality, to better evaluate the effectiveness of an HSS intervention in a rural district of Madagascar. The intervention aimed at improving system readiness at all levels of care (community health, primary health centers, district hospital) through facility renovations, staffing, equipment, and training, while removing logistical and financial barriers to medical care (e.g., ambulance network and user-fee exemptions). METHODS AND FINDINGS: We carried out a district-representative open longitudinal cohort study, with surveys administered to 1,522 households in the Ifanadiana district of Madagascar at the start of the HSS intervention in 2014, and again to 1,514 households in 2016. We examined changes in healthcare seeking behavior and outputs for sick-child care among children <5 years old, as well as for antenatal care and perinatal care among women aged 15-49. We used a difference-in-differences (DiD) analysis to compare trends between the intervention group (i.e., people living inside the HSS catchment area) and the non-intervention comparison group (i.e., the rest of the district). In addition, we used health facility-based surveys, monitoring service availability and readiness, to assess changes in the operational capacities of facilities supported by the intervention. The cohort study included 657 and 411 children (mean age = 2 years) reported to be ill in the 2014 and 2016 surveys, respectively (27.8% and 23.8% in the intervention group for each survey), as well as 552 and 524 women (mean age = 28 years) reported to have a live birth within the previous two years in the 2014 and 2016 surveys, respectively (31.5% and 29.6% in the intervention group for each survey). Over the two-year study period, the proportion of people who reported seeking care at health facilities experienced a relative change of +51.2% (from 41.4% in 2014 to 62.5% in 2016) and -7.1% (from 30.0% to 27.9%) in the intervention and non-intervention groups, respectively, for sick-child care (DiD p-value = 0.01); +11.4% (from 78.3% to 87.2%), and +10.3% (from 67.3% to 74.2%) for antenatal care (p-value = 0.75); and +66.2% (from 23.1% to 38.3%) and +28.9% (from 13.9% to 17.9%) for perinatal care (p-value = 0.13). Most indicators of care content, including rates of medication prescription and diagnostic test administration, appeared to increase more in the intervention compared to in the non-intervention group for the three areas of care we assessed. The reported prescription rate for oral rehydration therapy among children with diarrhea changed by +68.5% (from 29.6% to 49.9%) and -23.2% (from 17.8% to 13.7%) in the intervention and non-intervention groups, respectively (p-value = 0.05). However, trends observed in the care content varied widely by indicator and did not always match the large apparent increases observed in care seeking behavior, particularly for antenatal care, reflecting important gaps in the provision of essential health services for individuals who sought care. The main limitation of this study is that the intervention catchment was not randomly allocated, and some demographic indicators were better for this group at baseline than for the rest of the district, which could have impacted the trends observed. CONCLUSION: Using a district-representative longitudinal cohort to assess the content of care delivered to the population, we found a substantial increase over the two-year study period in the prescription rate for ill children and in all World Health Organization (WHO)-recommended perinatal care outputs assessed in the intervention group, with more modest changes observed in the non-intervention group. Despite improvements associated with the HSS intervention, this study highlights the need for further quality improvement in certain areas of the district's healthcare system. We show how content of care, measured through standard population-based surveys, can be used as a component of HSS impact evaluations, enabling healthcare leaders to track progress as well as identify and address specific gaps in the provision of services that extend beyond care access.
Assuntos
Serviços de Saúde da Criança/estatística & dados numéricos , Serviços de Saúde Materna/estatística & dados numéricos , Melhoria de Qualidade , Serviços de Saúde Rural/estatística & dados numéricos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Pesquisas sobre Atenção à Saúde , Humanos , Estudos Longitudinais , Madagáscar , Masculino , Pessoa de Meia-Idade , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Indicadores de Qualidade em Assistência à Saúde , Qualidade da Assistência à Saúde/estatística & dados numéricos , Programas Médicos Regionais/estatística & dados numéricos , Adulto JovemRESUMO
Despite widespread adoption of community health (CH) systems, there are evidence gaps to support global best practice in remote settings where access to health care is limited and community health workers (CHWs) may be the only available providers. The nongovernmental health organization Pivot partnered with the Ministry of Public Health (MoPH) to pilot a new enhanced community health (ECH) model in rural Madagascar, where one CHW provided care at a stationary CH site while additional CHWs provided care via proactive household visits. The program included professionalization of the CHW workforce (i.e., targeted recruitment, extended training, financial compensation) and twice monthly supervision of CHWs. For the first eighteen months of implementation (October 2019-March 2021), we compared utilization and proxy measures of quality of care in the intervention commune (local administrative unit) and five comparison communes with strengthened community health programs under a different model. This allowed for a quasi-experimental study design of the impact of ECH on health outcomes using routinely collected programmatic data. Despite the substantial support provided to other CHWs, the results show statistically significant improvements in nearly every indicator. Sick child visits increased by more than 269.0% in the intervention following ECH implementation. Average per capita monthly under-five visits were 0.25 in the intervention commune and 0.19 in the comparison communes (p<0.01). In the intervention commune, 40.3% of visits were completed at the household via proactive care. CHWs completed all steps of the iCCM protocol in 85.4% of observed visits in the intervention commune (vs 57.7% in the comparison communes, p-value<0.01). This evaluation demonstrates that ECH can improve care access and the quality of service delivery in a rural health district. Further research is needed to assess the generalizability of results and the feasibility of national scale-up as the MoPH continues to define the national community health program.
RESUMO
Data on population health are vital to evidence-based decision making but are rarely adequately localized or updated in continuous time. They also suffer from low ascertainment rates, particularly in rural areas where barriers to healthcare can cause infrequent touch points with the health system. Here, we demonstrate a novel statistical method to estimate the incidence of endemic diseases at the community level from passive surveillance data collected at primary health centers. The zero-corrected, gravity-model (ZERO-G) estimator explicitly models sampling intensity as a function of health facility characteristics and statistically accounts for extremely low rates of ascertainment. The result is a standardized, real-time estimate of disease incidence at a spatial resolution nearly ten times finer than typically reported by facility-based passive surveillance systems. We assessed the robustness of this method by applying it to a case study of field-collected malaria incidence rates from a rural health district in southeastern Madagascar. The ZERO-G estimator decreased geographic and financial bias in the dataset by over 90% and doubled the agreement rate between spatial patterns in malaria incidence and incidence estimates derived from prevalence surveys. The ZERO-G estimator is a promising method for adjusting passive surveillance data of common, endemic diseases, increasing the availability of continuously updated, high quality surveillance datasets at the community scale.
Assuntos
Doenças Endêmicas , Malária , Humanos , Malária/epidemiologia , Aceitação pelo Paciente de Cuidados de Saúde , Madagáscar , IncidênciaRESUMO
INTRODUCTION: Three years into the pandemic, there remains significant uncertainty about the true infection and mortality burden of COVID-19 in the World Health Organization Africa region. High quality, population-representative studies in Africa are rare and tend to be conducted in national capitals or large cities, leaving a substantial gap in our understanding of the impact of COVID-19 in rural, low-resource settings. Here, we estimated the spatio-temporal morbidity and mortality burden associated with COVID-19 in a rural health district of Madagascar until the first half of 2021. METHODS: We integrated a nested seroprevalence study within a pre-existing longitudinal cohort conducted in a representative sample of 1600 households in Ifanadiana District, Madagascar. Socio-demographic and health information was collected in combination with dried blood spots for about 6500 individuals of all ages, which were analysed to detect IgG and IgM antibodies against four specific proteins of SARS-CoV-2 in a bead-based multiplex immunoassay. We evaluated spatio-temporal patterns in COVID-19 infection history and its associations with several geographic, socio-economic and demographic factors via logistic regressions. RESULTS: Eighteen percent of people had been infected by April-June 2021, with seroprevalence increasing with individuals' age. COVID-19 primarily spread along the only paved road and in major towns during the first epidemic wave, subsequently spreading along secondary roads during the second wave to more remote areas. Wealthier individuals and those with occupations such as commerce and formal employment were at higher risk of being infected in the first wave. Adult mortality increased in 2020, particularly for older men for whom it nearly doubled up to nearly 40 deaths per 1000. Less than 10% of mortality in this period would be directly attributed to COVID-19 deaths if known infection fatality ratios are applied to observed seroprevalence in the district. CONCLUSION: Our study provides a very granular understanding on COVID-19 transmission and mortality in a rural population of sub-Saharan Africa and suggests that the disease burden in these areas may have been substantially underestimated.
Assuntos
COVID-19 , Adulto , Masculino , Humanos , Idoso , Estudos Soroepidemiológicos , SARS-CoV-2 , Madagáscar/epidemiologia , População Rural , Morbidade , Pandemias , Anticorpos AntiviraisRESUMO
While much progress has been achieved over the last decades, malaria surveillance and control remain a challenge in countries with limited health care access and resources. High-resolution predictions of malaria incidence using routine surveillance data could represent a powerful tool to health practitioners by targeting malaria control activities where and when they are most needed. Here, we investigate the predictors of spatio-temporal malaria dynamics in rural Madagascar, estimated from facility-based passive surveillance data. Specifically, this study integrates climate, land-use, and representative household survey data to explain and predict malaria dynamics at a high spatial resolution (i.e., by Fokontany, a cluster of villages) relevant to health care practitioners. Combining generalized linear mixed models (GLMM) and path analyses, we found that socio-economic, land use and climatic variables are all important predictors of monthly malaria incidence at fine spatial scales, via both direct and indirect effects. In addition, out-of-sample predictions from our model were able to identify 58% of the Fokontany in the top quintile for malaria incidence and account for 77% of the variation in the Fokontany incidence rank. These results suggest that it is possible to build a predictive framework using environmental and social predictors that can be complementary to standard surveillance systems and help inform control strategies by field actors at local scales.
RESUMO
BACKGROUND: To reach global immunisation goals, national programmes need to balance routine immunisation at health facilities with vaccination campaigns and other outreach activities (eg, vaccination weeks), which boost coverage at particular times and help reduce geographical inequalities. However, where routine immunisation is weak, an over-reliance on vaccination campaigns may lead to heterogeneous coverage. Here, we assessed the impact of a health system strengthening (HSS) intervention on the relative contribution of routine immunisation and outreach activities to reach immunisation goals in rural Madagascar. METHODS: We obtained data from health centres in Ifanadiana district on the monthly number of recommended vaccines (BCG, measles, diphtheria, tetanus and pertussis (DTP) and polio) delivered to children, during 2014-2018. We also analysed data from a district-representative cohort carried out every 2 years in over 1500 households in 2014-2018. We compared changes inside and outside the HSS catchment in the delivery of recommended vaccines, population-level vaccination coverage, geographical and economic inequalities in coverage, and timeliness of vaccination. The impact of HSS was quantified via mixed-effects logistic regressions. RESULTS: The HSS intervention was associated with a significant increase in immunisation rates (OR between 1.22 for measles and 1.49 for DTP), which diminished over time. Outreach activities were associated with a doubling in immunisation rates, but their effect was smaller in the HSS catchment. Analysis of cohort data revealed that HSS was associated with higher vaccination coverage (OR between 1.18 per year of HSS for measles and 1.43 for BCG), a reduction in economic inequality, and a higher proportion of timely vaccinations. Yet, the lower contribution of outreach activities in the HSS catchment was associated with persistent inequalities in geographical coverage, which prevented achieving international coverage targets. CONCLUSION: Investment in stronger primary care systems can improve vaccination coverage, reduce inequalities and improve the timeliness of vaccination via increases in routine immunisations.
Assuntos
População Rural , Cobertura Vacinal , Criança , Humanos , Imunização , Madagáscar , VacinaçãoRESUMO
Geographic distance is a critical barrier to healthcare access, particularly for rural communities with poor transportation infrastructure who rely on non-motorized transportation. There is broad consensus on the importance of community health workers (CHWs) to reduce the effects of geographic isolation on healthcare access. Due to a lack of fine-scale spatial data and individual patient records, little is known about the precise effects of CHWs on removing geographic barriers at this level of the healthcare system. Relying on a high-quality, crowd-sourced dataset that includes all paths and buildings in the area, we explored the impact of geographic distance from CHWs on the use of CHW services for children under 5 years in the rural district of Ifanadiana, southeastern Madagascar from 2018-2021. We then used this analysis to determine key features of an optimal geographic design of the CHW system, specifically optimizing a single CHW location or installing additional CHW sites. We found that consultation rates by CHWs decreased with increasing distance patients travel to the CHW by approximately 28.1% per km. The optimization exercise revealed that the majority of CHW sites (50/80) were already in an optimal location or shared an optimal location with a primary health clinic. Relocating the remaining CHW sites based on a geographic optimum was predicted to increase consultation rates by only 7.4%. On the other hand, adding a second CHW site was predicted to increase consultation rates by 31.5%, with a larger effect in more geographically dispersed catchments. Geographic distance remains a barrier at the level of the CHW, but optimizing CHW site location based on geography alone will not result in large gains in consultation rates. Rather, alternative strategies, such as the creation of additional CHW sites or the implementation of proactive care, should be considered.
RESUMO
Poor geographic access can persist even when affordable and well-functioning health systems are in place, limiting efforts for universal health coverage (UHC). It is unclear how to balance support for health facilities and community health workers in UHC national strategies. The goal of this study was to evaluate how a health system strengthening (HSS) intervention aimed towards UHC affected the geographic access to primary care in a rural district of Madagascar. For this, we collected the fokontany of residence (lowest administrative unit) from nearly 300 000 outpatient consultations occurring in facilities of Ifanadiana district in 2014-2017 and in the subset of community sites supported by the HSS intervention. Distance from patients to facilities was accurately estimated following a full mapping of the district's footpaths and residential areas. We modelled per capita utilization for each fokontany through interrupted time-series analyses with control groups, accounting for non-linear relationships with distance and travel time among other factors, and we predicted facility utilization across the district under a scenario with and without HSS. Finally, we compared geographic trends in primary care when combining utilization at health facilities and community sites. We find that facility-based interventions similar to those in UHC strategies achieved high utilization rates of 1-3 consultations per person year only among populations living in close proximity to facilities. We predict that scaling only facility-based HSS programmes would result in large gaps in access, with over 75% of the population unable to reach one consultation per person year. Community health delivery, available only for children under 5 years, provided major improvements in service utilization regardless of their distance from facilities, contributing to 90% of primary care consultations in remote populations. Our results reveal the geographic limits of current UHC strategies and highlight the need to invest on professionalized community health programmes with larger scopes of service.
Assuntos
População Rural , Cobertura Universal do Seguro de Saúde , Criança , Pré-Escolar , Instalações de Saúde , Acessibilidade aos Serviços de Saúde , Humanos , Madagáscar , Atenção Primária à SaúdeRESUMO
BACKGROUND: The provision of emergency and hospital care has become an integral part of the global vision for universal health coverage. To strengthen secondary care systems, we need to accurately understand the time necessary for populations to reach a hospital. The goal of this study was to develop methods that accurately estimate referral and prehospital time for rural districts in low and middle-income countries. We used these estimates to assess how local geography can limit the impact of a strengthened referral programme in a rural district of Madagascar. METHODS: We developed a database containing: travel speed by foot and motorised vehicles in Ifanadiana district; a full mapping of all roads, footpaths and households; and remotely sensed data on terrain, land cover and climatic characteristics. We used this information to calibrate estimates of referral and prehospital time based on the shortest route algorithms and statistical models of local travel speed. We predict the impact on referral numbers of strategies aimed at reducing referral time for underserved populations via generalised linear mixed models. RESULTS: About 10% of the population lived less than 2 hours from the hospital, and more than half lived over 4 hours away, with variable access depending on climatic conditions. Only the four health centres located near the paved road had referral times to the hospital within 1 hour. Referral time remained the main barrier limiting the number of referrals despite health system strengthening efforts. The addition of two new referral centres is estimated to triple the population living within 2 hours from a centre with better emergency care capacity and nearly double the number of expected referrals. CONCLUSION: This study demonstrates how adapting geographic accessibility modelling methods to local scales can occur through improving the precision of travel time estimates and pairing them with data on health facility use.
Assuntos
Encaminhamento e Consulta , População Rural , Humanos , Madagáscar , Viagem , Cobertura Universal do Seguro de SaúdeRESUMO
There are many outstanding questions about how to control the global COVID-19 pandemic. The information void has been especially stark in the World Health Organization Africa Region, which has low per capita reported cases, low testing rates, low access to therapeutic drugs, and has the longest wait for vaccines. As with all disease, the central challenge in responding to COVID-19 is that it requires integrating complex health systems that incorporate prevention, testing, front line health care, and reliable data to inform policies and their implementation within a relevant timeframe. It requires that the population can rely on the health system, and decision-makers can rely on the data. To understand the process and challenges of such an integrated response in an under-resourced rural African setting, we present the COVID-19 strategy in Ifanadiana District, where a partnership between Malagasy Ministry of Public Health (MoPH) and non-governmental organizations integrates prevention, diagnosis, surveillance, and treatment, in the context of a model health system. These efforts touch every level of the health system in the district-community, primary care centers, hospital-including the establishment of the only RT-PCR lab for SARS-CoV-2 testing outside of the capital. Starting in March of 2021, a second wave of COVID-19 occurred in Madagascar, but there remain fewer cases in Ifanadiana than for many other diseases (e.g., malaria). At the Ifanadiana District Hospital, there have been two deaths that are officially attributed to COVID-19. Here, we describe the main components and challenges of this integrated response, the broad epidemiological contours of the epidemic, and how complex data sources can be developed to address many questions of COVID-19 science. Because of data limitations, it still remains unclear how this epidemic will affect rural areas of Madagascar and other developing countries where health system utilization is relatively low and there is limited capacity to diagnose and treat COVID-19 patients. Widespread population based seroprevalence studies are being implemented in Ifanadiana to inform the COVID-19 response strategy as health systems must simultaneously manage perennial and endemic disease threats.
Assuntos
COVID-19 , Teste para COVID-19 , Humanos , Madagáscar/epidemiologia , Pandemias , SARS-CoV-2 , Estudos SoroepidemiológicosRESUMO
Health care is most effective when a patient's basic primary care needs are met as close to home as possible, with advanced care accessible when needed. In Ifanadiana District, Madagascar, a collaboration between the Ministry of Public Health (MoPH) and PIVOT, a non-governmental organization (NGO), fosters Networks of Care (NOC) to support high-quality, patient-centered care. The district's health system has three levels of care: community, health center, district hospital; a regional hospital is available for tertiary care services. We explore the MoPH/PIVOT collaboration through a case study which focuses on noteworthy elements of the collaboration across the four NOC domains: (I) agreement and enabling environment, (II) operational standards, (III) quality, efficiency, and responsibility, (IV) learning and adaptation. Under Domain I, we describe formal agreements between the MoPH and PIVOT and the process for engaging communities in creating effective NOC. Domain II discusses patient referral across levels of the health system and improvements to facility readiness and service availability. Under Domain III the collaboration prioritizes communication and supervision to support clinical quality, and social support for patients. Domain IV focuses on evaluation, research, and the use of data to modify programs to better meet community needs. The case study, organized by the domains of the NOC framework, demonstrates that a collaboration between the MoPH and an NGO can create effective NOC in a remote district with limited accessibility and advance the country's agenda to achieve universal health coverage.
Assuntos
Redes Comunitárias , Reforma dos Serviços de Saúde/métodos , Cobertura Universal do Seguro de Saúde/tendências , Reforma dos Serviços de Saúde/tendências , Humanos , Madagáscar , Atenção Primária à Saúde/economia , Atenção Primária à Saúde/métodosRESUMO
INTRODUCTION: Despite renewed commitment to universal health coverage and health system strengthening (HSS) to improve access to primary care, there is insufficient evidence to guide their design and implementation. To address this, we conducted an impact evaluation of an ongoing HSS initiative in rural Madagascar, combining data from a longitudinal cohort and primary health centres. METHODS: We carried out a district representative household survey at the start of the HSS intervention in 2014 in over 1500 households in Ifanadiana district, and conducted follow-up surveys at 2 and 4 years. At each time point, we estimated maternal, newborn and child health coverage; economic and geographical inequalities in coverage; and child mortality rates; both in the HSS intervention and control catchments. We used logistic regression models to evaluate changes associated with exposure to the HSS intervention. We also estimated changes in health centre per capita utilisation during 2013 to 2018. RESULTS: Child mortality rates decreased faster in the HSS than in the control catchment. We observed significant improvements in care seeking for children under 5 years of age (OR 1.23; 95% CI 1.05 to 1.44) and individuals of all ages (OR 1.37, 95% CI 1.19 to 1.58), but no significant differences in maternal care coverage. Economic inequalities in most coverage indicators were reduced, while geographical inequalities worsened in nearly half of the indicators. CONCLUSION: The results demonstrate improvements in care seeking and economic inequalities linked to the early stages of a HSS intervention in rural Madagascar. Additional improvements in this context of persistent geographical inequalities will require a stronger focus on community health.