Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(5): 909-927, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390279

RESUMO

Pontocerebellar hypoplasias (PCHs) are congenital disorders characterized by hypoplasia or early atrophy of the cerebellum and brainstem, leading to a very limited motor and cognitive development. Although over 20 genes have been shown to be mutated in PCHs, a large proportion of affected individuals remains undiagnosed. We describe four families with children presenting with severe neonatal brainstem dysfunction and pronounced deficits in cognitive and motor development associated with four different bi-allelic mutations in PRDM13, including homozygous truncating variants in the most severely affected individuals. Brain MRI and fetopathological examination revealed a PCH-like phenotype, associated with major hypoplasia of inferior olive nuclei and dysplasia of the dentate nucleus. Notably, histopathological examinations highlighted a sparse and disorganized Purkinje cell layer in the cerebellum. PRDM13 encodes a transcriptional repressor known to be critical for neuronal subtypes specification in the mouse retina and spinal cord but had not been implicated, so far, in hindbrain development. snRNA-seq data mining and in situ hybridization in humans show that PRDM13 is expressed at early stages in the progenitors of the cerebellar ventricular zone, which gives rise to cerebellar GABAergic neurons, including Purkinje cells. We also show that loss of function of prdm13 in zebrafish leads to a reduction in Purkinje cells numbers and a complete absence of the inferior olive nuclei. Altogether our data identified bi-allelic mutations in PRDM13 as causing a olivopontocerebellar hypoplasia syndrome and suggest that early deregulations of the transcriptional control of neuronal fate specification could contribute to a significant number of cases.


Assuntos
Encefalopatias , Peixe-Zebra , Animais , Encefalopatias/patologia , Tronco Encefálico , Cerebelo/anormalidades , Cerebelo/patologia , Deficiências do Desenvolvimento , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Mutação/genética , Malformações do Sistema Nervoso , Neurogênese/genética , Células de Purkinje/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/metabolismo
2.
Brain ; 146(5): 1804-1811, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349561

RESUMO

Corpus callosum defects are frequent congenital cerebral disorders caused by mutations in more than 300 genes. These include genes implicated in corpus callosum development or function, as well as genes essential for mitochondrial physiology. However, in utero corpus callosum anomalies rarely raise a suspicion of mitochondrial disease and are characterized by a very large clinical heterogeneity. Here, we report a detailed pathological and neuro-histopathological investigation of nine foetuses from four unrelated families with prenatal onset of corpus callosum anomalies, sometimes associated with other cerebral or extra-cerebral defects. Next generation sequencing allowed the identification of novel pathogenic variants in three different nuclear genes previously reported in mitochondrial diseases: TIMMDC1, encoding a Complex I assembly factor never involved before in corpus callosum defect; MRPS22, a protein of the small mitoribosomal subunit; and EARS2, the mitochondrial tRNA-glutamyl synthetase. The present report describes the antenatal histopathological findings in mitochondrial diseases and expands the genetic spectrum of antenatal corpus callosum anomalies establishing OXPHOS function as an important factor for corpus callosum biogenesis. We propose that, when observed, antenatal corpus callosum anomalies should raise suspicion of mitochondrial disease and prenatal genetic counselling should be considered.


Assuntos
Corpo Caloso , Doenças Mitocondriais , Humanos , Feminino , Gravidez , Corpo Caloso/patologia , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Doenças Mitocondriais/genética , Mitocôndrias/patologia , Mutação , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
3.
Am J Med Genet A ; 188(8): 2331-2338, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35686685

RESUMO

The recent finding that some patients with fetal akinesia deformation sequence (FADS) carry variants in the TUBB2B gene has prompted us to add to the existing literature a first description of two fetal FADS cases carrying TUBA1A variants. Hitherto, only isolated cortical malformations have been described with TUBA1A mutation, including microlissencephaly, lissencephaly, central pachygyria and polymicrogyria-like cortical dysplasia, generalized polymicrogyria cortical dysplasia, and/or the "simplified" gyral pattern. The neuropathology of our fetal cases shows several common features of tubulinopathies, in particular, the dysmorphism of the basal ganglia, as the most pathognomonic sign. The cortical ribbon anomalies were extremely severe and concordant with the complex cortical malformation. In conclusion, we broaden the phenotypic spectrum of TUBA1A variants, to include FADS.


Assuntos
Artrogripose , Lisencefalia , Malformações do Desenvolvimento Cortical , Polimicrogiria , Artrogripose/diagnóstico , Artrogripose/genética , Humanos , Lisencefalia/genética , Malformações do Desenvolvimento Cortical/genética , Mutação , Tubulina (Proteína)/genética
4.
Pediatr Dev Pathol ; 25(4): 435-446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35382634

RESUMO

BACKGROUND: Increasing number of mutations responsible for vascular lesions, leading to ischemic or hemorrhagic stroke in young adults, has been identified in the recent years. It has been demonstrated in both mice and humans, that mutations in COL4A1 gene promote cerebral hemorrhages. In humans, both adults and children may be affected, and the spectrum has been broadened recently to neonates and fetuses. METHODS: We present a cohort of eight COL4A1 mutated fetuses in which cerebral hemorrhages were detected by ultrasound leading to elective terminations of pregnancy. RESULTS: Our neuropathological studies demonstrated a strikingly similar pathological pattern, dominated by supra- and infratentorial multifocal hemorrhagic lesions of various abundance and age in the vicinity of enlarged small vessels having a discontinuous wall. This was constantly associated with a spectrum of supratentorial post-ischemic damages of the grey and white matters. Morphometric studies of brain vessels confirmed vascular dilation and hypervascularization in both grey and white matters and severe attenuation of the smooth-muscle actin staining in the white matter. CONCLUSION: These observations add to the rare human neuropathological phenotype of COL4A1 mutations. Its recognition is mandatory to enhance the number of tested patients in the future, as well as the genetic counseling of parents.


Assuntos
Colágeno Tipo IV , Diagnóstico Pré-Natal , Hemorragia Cerebral/genética , Colágeno Tipo IV/genética , Feminino , Humanos , Mutação , Fenótipo , Gravidez
5.
Acta Neuropathol ; 142(4): 761-776, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34347142

RESUMO

Dandy-Walker malformation (DWM) and Cerebellar vermis hypoplasia (CVH) are commonly recognized human cerebellar malformations diagnosed following ultrasound and antenatal or postnatal MRI. Specific radiological criteria are used to distinguish them, yet little is known about their differential developmental disease mechanisms. We acquired prenatal cases diagnosed as DWM and CVH and studied cerebellar morphobiometry followed by histological and immunohistochemical analyses. This was supplemented by laser capture microdissection and RNA-sequencing of the cerebellar rhombic lip, a transient progenitor zone, to assess the altered transcriptome of DWM vs control samples. Our radiological findings confirm that the cases studied fall within the accepted biometric range of DWM. Our histopathological analysis points to reduced foliation and inferior vermian hypoplasia as common features in all examined DWM cases. We also find that the rhombic lip, a dorsal stem cell zone that drives the growth and maintenance of the posterior vermis is specifically disrupted in DWM, with reduced proliferation and self-renewal of the progenitor pool, and altered vasculature, all confirmed by transcriptomics analysis. We propose a unified model for the developmental pathogenesis of DWM. We hypothesize that rhombic lip development is disrupted through either aberrant vascularization and/or direct insult which causes reduced proliferation and failed expansion of the rhombic lip progenitor pool leading to disproportionate hypoplasia and dysplasia of the inferior vermis. Timing of insult to the developing rhombic lip (before or after 14 PCW) dictates the extent of hypoplasia and distinguishes DWM from CVH.


Assuntos
Cerebelo/anormalidades , Síndrome de Dandy-Walker/embriologia , Síndrome de Dandy-Walker/patologia , Desenvolvimento Fetal/fisiologia , Feto/patologia , Malformações do Sistema Nervoso/embriologia , Malformações do Sistema Nervoso/patologia , Estudos de Casos e Controles , Cerebelo/embriologia , Cerebelo/patologia , Deficiências do Desenvolvimento/patologia , Humanos , Recém-Nascido
6.
Neurobiol Dis ; 136: 104709, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31843706

RESUMO

Corpus callosum agenesis (CCA) is a brain malformation associated with a wide clinical spectrum including intellectual disability (ID) and an etiopathological complexity. We identified a novel missense G424R mutation in the X-linked p21-activated kinase 3 (PAK3) gene in a boy presenting with severe ID, microcephaly and CCA and his fetal sibling with CCA and severe hydrocephaly. PAK3 kinase is known to control synaptic plasticity and dendritic spine dynamics but its implication is less characterized in brain ontogenesis. In order to identify developmental functions of PAK3 impacted by mutations responsible for CCA, we compared the biochemical and biological effects of three PAK3 mutations localized in the catalytic domain. These mutations include two "severe" G424R and K389N variants (responsible for severe ID and CCA) and the "mild" A365E variant (responsible for nonsyndromic mild ID). Whereas they suppressed kinase activity, only the two severe variants displayed normal protein stability. Furthermore, they increased interactions between PAK3 and the guanine exchange factor αPIX/ARHGEF6, disturbed adhesion point dynamics and cell spreading, and severely impacted cell migration. Our findings highlight new molecular defects associated with mutations responsible for severe clinical phenotypes with developmental brain defects.


Assuntos
Agenesia do Corpo Caloso/genética , Movimento Celular/fisiologia , Deficiência Intelectual/genética , Mutação/genética , Índice de Gravidade de Doença , Quinases Ativadas por p21/genética , Agenesia do Corpo Caloso/complicações , Agenesia do Corpo Caloso/diagnóstico por imagem , Sequência de Aminoácidos , Animais , Células COS , Criança , Chlorocebus aethiops , Células HEK293 , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico por imagem , Masculino , Linhagem , Estrutura Secundária de Proteína , Quinases Ativadas por p21/química
7.
Clin Genet ; 98(3): 261-273, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32621347

RESUMO

Megacystis-microcolon-intestinal-hypoperistalsis syndrome (MMIHS) is a severe congenital visceral myopathy characterized by an abdominal distension due to a large non-obstructed urinary bladder, a microcolon and intestinal hypo- or aperistalsis. Most of the patients described to date carry a sporadic heterozygous variant in ACTG2. More recently, recessive forms have been reported and mutations in MYH11, LMOD1, MYLK and MYL9 have been described at the molecular level. In the present report, we describe five patients carrying a recurrent heterozygous variant in ACTG2. Exome sequencing performed in four families allowed us to identify the genetic cause in three. In two families, we identified variants in MMIHS causal genes, respectively a nonsense homozygous variant in MYH11 and a previously described homozygous deletion in MYL9. Finally, we identified compound heterozygous variants in a novel candidate gene, PDCL3, c.[143_144del];[380G>A], p.[(Tyr48Ter)];[(Cys127Tyr)]. After cDNA analysis, a complete absence of PDLC3 expression was observed in affected individuals, indicating that both mutated transcripts were unstable and prone to mediated mRNA decay. PDCL3 encodes a protein involved in the folding of actin, a key step in thin filament formation. Presumably, loss-of-function of this protein affects the contractility of smooth muscle tissues, making PDCL3 an excellent candidate gene for autosomal recessive forms of MMIHS.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Transporte/genética , Colo/anormalidades , Predisposição Genética para Doença , Pseudo-Obstrução Intestinal/genética , Proteínas do Tecido Nervoso/genética , Bexiga Urinária/anormalidades , Anormalidades Múltiplas/patologia , Feto Abortado , Actinas/genética , Colo/patologia , Feminino , Homozigoto , Humanos , Recém-Nascido , Pseudo-Obstrução Intestinal/patologia , Masculino , Mutação/genética , Cadeias Pesadas de Miosina/genética , Cadeias Leves de Miosina/genética , Linhagem , Bexiga Urinária/patologia , Sequenciamento do Exoma
9.
Am J Med Genet A ; 182(5): 1236-1242, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32052936

RESUMO

Cerebro-oculo-facio-skeletal syndrome (COFS) is a rare autosomal recessive neurodegenerative disease belonging to the family of DNA repair disorders, characterized by microcephaly, congenital cataracts, facial dysmorphism and arthrogryposis. Here, we describe the detailed morphological and microscopic phenotype of three fetuses from two families harboring ERCC5/XPG likely pathogenic variants, and review the five previously reported fetal cases. In addition to the classical features of COFS, the fetuses display thymus hyperplasia, splenomegaly and increased hematopoiesis. Microencephaly is present in the three fetuses with delayed development of the gyri, but normal microscopic anatomy at the supratentorial level. Microscopic anomalies reminiscent of pontocerebellar hypoplasia are present at the infratentorial level. In conclusion, COFS syndrome should be considered in fetuses when intrauterine growth retardation is associated with microcephaly, arthrogryposis and ocular anomalies. Further studies are needed to better understand XPG functions during human development.


Assuntos
Síndrome de Cockayne/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Doenças Neurodegenerativas/genética , Proteínas Nucleares/genética , Diagnóstico Pré-Natal , Fatores de Transcrição/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Catarata/diagnóstico , Catarata/patologia , Síndrome de Cockayne/diagnóstico , Síndrome de Cockayne/epidemiologia , Síndrome de Cockayne/patologia , Feminino , Feto/patologia , Humanos , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Microcefalia/patologia , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/patologia , Gravidez
10.
Am J Obstet Gynecol ; 223(2): 256.e1-256.e9, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32283072

RESUMO

BACKGROUND: Despite undisputable benefits, midtrimester prenatal surgery is not a cure for myelomeningocele (MMC): residual intracranial and motor deficits leading to lifelong handicap question the timing of prenatal surgery. Indeed, the timing and intensity of intrauterine spinal cord injury remains ill defined. OBJECTIVE: We aimed to describe the natural history of neuronal loss in MMC in utero based on postmortem pathology. STUDY DESIGN: Pathology findings were analyzed in 186 cases of myelomeningocele with lesion level between S1 and T1. Using a case-control, cross-sectional design, we investigated the timewise progression and topographic extension of neuronal loss between 13 and 39 weeks. Motor neurons were counted on histology at several spinal levels in 54 isolated MMC meeting quality criteria for cell counting. These were expressed as observed-to-expected ratios, after matching for gestational age and spinal level with 41 controls. RESULTS: Chiari II malformation increased from 30.7% to 91.6% after 16 weeks. The exposed spinal cord displayed early, severe, and progressive neuronal loss: the observed-to-expected count dropped from 17% to ≤2% after 16 weeks. Neuronal loss extended beyond the lesion to the upper levels: in cases <16 weeks, the observed-to-expected motor neuron count was 60% in the adjacent spinal cord, decreasing at a rate of 16% per week. Progressive loss was also found in the upper thoracic cord, but in much smaller proportions. The observed-over-expected ratio of motor neurons was not correlated with the level of myelomeningocele. CONCLUSIONS: Significant neuronal loss is present ≤16 weeks in the exposed cord and progressively extends cranially. Earlier prenatal repair (<16 weeks) could prevent Chiari II malformation in 69.3% of cases, rescue the 17% remaining motor neurons in the exposed cord, and prevent the extension to the upper spinal cord.


Assuntos
Malformação de Arnold-Chiari/patologia , Idade Gestacional , Meningomielocele/patologia , Neurônios Motores/patologia , Medula Espinal/patologia , Aborto Induzido , Malformação de Arnold-Chiari/embriologia , Autopsia , Progressão da Doença , Feminino , Terapias Fetais , Humanos , Vértebras Lombares , Meningomielocele/embriologia , Meningomielocele/cirurgia , Procedimentos Neurocirúrgicos , Gravidez , Primeiro Trimestre da Gravidez , Segundo Trimestre da Gravidez , Estudos Retrospectivos , Sacro , Vértebras Torácicas
11.
Prenat Diagn ; 39(11): 1026-1034, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299102

RESUMO

OBJECTIVE: Neural tube defects (NTDs) are one of the most common congenital anomalies caused by a complex interaction of many genetic and environmental factors. In about 10% of cases, NTDs are associated with genetic syndromes or chromosomal anomalies. Among these, SOX3 duplication has been reported in some isolated cases. The phenotype associated with this microduplication is variable and includes myelomeningocele (MMC) in both sexes as well as hypopituitarism and cognitive impairment in males. In order to determine the prevalence of this anomaly in fetuses with MMC, a retrospective cohort of fetuses with MMC was analyzed by quantitative PCR (qPCR) targeting SOX3 locus. METHODS: The detection of an SOX3 microduplication by chromosomal microarray analysis (CMA) in two female fetuses with MMC prompted us to analyze retrospectively by qPCR this gene in a cohort of 53 fetuses with MMC. RESULTS: In addition to our two initial cases, one fetus harboring an Xq27.1q28 duplication that encompasses the SOX3 gene was detected. CONCLUSION: Our data demonstrate that SOX3 duplication is a genomic imbalance involved in the pathogenesis of NTDs. In addition, our survey highlights the importance of CMA testing in fetuses with NTDs to enable genetic counseling upstream of any considerations of in utero fetal surgery.


Assuntos
Variações do Número de Cópias de DNA , Meningomielocele/genética , Fatores de Transcrição SOXB1/genética , Adulto , Análise Citogenética , Feminino , Duplicação Gênica , Humanos , Meningomielocele/diagnóstico , Gravidez , Diagnóstico Pré-Natal , Estudos Retrospectivos , Adulto Jovem
12.
Am J Med Genet A ; 176(5): 1091-1098, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29681083

RESUMO

Corpus callosum (CC) is the major brain commissure connecting homologous areas of cerebral hemispheres. CC anomalies (CCAs) are the most frequent brain anomalies leading to variable neurodevelopmental outcomes making genetic counseling difficult in the absence of a known etiology that might inform the prognosis. Here, we used whole exome sequencing, and a targeted capture panel of syndromic CCA known causal and candidate genes to screen a cohort of 64 fetuses with CCA observed upon autopsy, and 34 children with CCA and intellectual disability. In one fetus and two patients, we identified three novel de novo mutations in ZBTB20, which was previously shown to be causal in Primrose syndrome. In addition to CCA, all cases presented with additional features of Primrose syndrome including facial dysmorphism and macrocephaly or megalencephaly. All three variations occurred within two out of the five zinc finger domains of the transcriptional repressor ZBTB20. Through homology modeling, these variants are predicted to result in local destabilization of each zinc finger domain suggesting subsequent abnormal repression of ZBTB20 target genes. Neurohistopathological analysis of the fetal case showed abnormal regionalization of the hippocampal formation as well as a reduced density of cortical upper layers where originate most callosal projections. Here, we report novel de novo ZBTB20 mutations in three independent cases with characteristic features of Primrose syndrome including constant CCA. Neurohistopathological findings in fetal case corroborate the observed key role of ZBTB20 during hippocampal and neocortical development. Finally, this study highlights the crucial role of ZBTB20 in CC development in human.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Agenesia do Corpo Caloso/diagnóstico , Agenesia do Corpo Caloso/genética , Calcinose/diagnóstico , Calcinose/genética , Otopatias/diagnóstico , Otopatias/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Atrofia Muscular/diagnóstico , Atrofia Muscular/genética , Mutação , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Adolescente , Sequência de Aminoácidos , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Masculino , Proteínas do Tecido Nervoso/química , Conformação de Ácido Nucleico , Linhagem , Fenótipo , Conformação Proteica , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Fatores de Transcrição/química
13.
Prenat Diagn ; 38(10): 772-778, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29949202

RESUMO

We report a multiplex family with a GATA1 gene mutation responsible for a massive fetal cerebral hemorrhage occurring at 36 weeks. Two other stillbirth cousins presented with fetal hydrops and congenital hemochromatosis' phenotype at 37 and 12 weeks of gestation. Molecular screening revealed the presence of a c.613G>A pathogenic allelic variation in exon 4 of GATA1 gene in the 3 male siblings and their carrier mothers. The diagnosis of a GATA1 gene mutation may be suspected in cases of male fetuses with intracerebral bleeding, particularly if a history of prior fetal loss(es) and mild maternal thrombocytopenia are also present.


Assuntos
Hemorragia Cerebral/genética , Doenças Fetais/genética , Fator de Transcrição GATA1/genética , Adulto , Feminino , Genes Ligados ao Cromossomo X , Humanos , Mutação , Gravidez
14.
Fetal Pediatr Pathol ; 37(6): 411-417, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30595068

RESUMO

INTRODUCTION: Beckwith-Wiedemann syndrome (BWS) is the most common overgrowth syndrome. Clinical features are highly variable, including occasional posterior fossa malformations but no femoral shortening. CASE REPORT: We report two fetuses with BWS associated with short femurs and corpus callosum hypoplasia. Case 2 was growth restricted. BWS was confirmed by molecular studies showing a loss of methylation at ICR2 at 11p15 chromosomic region in case 1 and a gain of methylation at ICR1 and a loss of methylation at ICR2 locus in case 2. CONCLUSION: Although the phenotype and the genotype of BWS is now well-known, the presence of corpus callosum abnormalities and short femurs expand the phenotypic spectrum of the disorder.


Assuntos
Agenesia do Corpo Caloso/genética , Síndrome de Beckwith-Wiedemann/patologia , Fêmur/anormalidades , Feto , Humanos , Masculino
15.
Hum Mol Genet ; 23(9): 2279-89, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24319099

RESUMO

Non-syndromic arthrogryposis multiplex congenita (AMC) is characterized by multiple congenital contractures resulting from reduced fetal mobility. Genetic mapping and whole exome sequencing (WES) were performed in 31 multiplex and/or consanguineous undiagnosed AMC families. Although this approach identified known AMC genes, we here report pathogenic mutations in two new genes. Homozygous frameshift mutations in CNTNAP1 were found in four unrelated families. Patients showed a marked reduction in motor nerve conduction velocity (<10 m/s) and transmission electron microscopy (TEM) of sciatic nerve in the index cases revealed severe abnormalities of both nodes of Ranvier width and myelinated axons. CNTNAP1 encodes CASPR, an essential component of node of Ranvier domains which underlies saltatory conduction of action potentials along the myelinated axons, an important process for neuronal function. A homozygous missense mutation in adenylate cyclase 6 gene (ADCY6) was found in another family characterized by a lack of myelin in the peripheral nervous system (PNS) as determined by TEM. Morpholino knockdown of the zebrafish orthologs led to severe and specific defects in peripheral myelin in spite of the presence of Schwann cells. ADCY6 encodes a protein that belongs to the adenylate cyclase family responsible for the synthesis of cAMP. Elevation of cAMP can mimic axonal contact in vitro and upregulates myelinating signals. Our data indicate an essential and so far unknown role of ADCY6 in PNS myelination likely through the cAMP pathway. Mutations of genes encoding proteins of Ranvier domains or involved in myelination of Schwann cells are responsible for novel and severe human axoglial diseases.


Assuntos
Adenilil Ciclases/genética , Artrogripose/genética , Artrogripose/patologia , Moléculas de Adesão Celular Neuronais/genética , Axônios/patologia , Axônios/ultraestrutura , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Mutação/genética , Bainha de Mielina/patologia , Sistema Nervoso Periférico/patologia , Sistema Nervoso Periférico/ultraestrutura , Gravidez , Células de Schwann/metabolismo
16.
Birth Defects Res A Clin Mol Teratol ; 106(1): 36-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26663670

RESUMO

BACKGROUND: Corpus callosum malformation (CCM) is the most frequent brain malformation observed at birth. Because CCM is a highly heterogeneous condition, the prognosis of fetuses diagnosed prenatally remains uncertain, making prenatal counseling difficult. METHODS AND RESULTS: We evaluated retrospectively a total of 138 fetuses, 117 with CCM observed on prenatal imaging examination, and 21 after postmortem autopsy. On ultrasound and/or magnetic resonance imaging, CCM was either isolated (N = 40) or associated with other neurological (N = 57) or extra cerebral findings (N = 21/20, respectively). RESULTS: Most fetuses (N = 132) remained without a diagnosis at the time of pregnancy termination. This emphasizes the need to establish a neuropathological classification and to perform a genomic screening using comparative genomic hybridization. A neuropathological examination performed on 138 cases revealed a spectrum of CCMs, classified as follows: agenesis of corpus callosum (55), CC hypoplasia (30), CC dysmorphism (24), and CCM associated with a malformation of cortical development (29). Of interest, after fetopathological examination, only 16/40 malformations were classified as isolated, highlighting the importance of the autopsy following termination of pregnancy. Among the 138 cases, the underlying etiology was found in 46 cases: diabetes (one case), cytomegalovirus infection (one case), 23 chromosome abnormalities, and 21 mendelian conditions. CONCLUSION: In our series of 138 cases of CCM, prenatal and postmortem examinations identified a variety of genetic causes. However, no diagnosis could be established in 67% of cases. The classification based on the underlying neurodevelopmental defects paves the way for further genetic studies and genotype-phenotype correlations.


Assuntos
Agenesia do Corpo Caloso/diagnóstico , Aberrações Cromossômicas , Corpo Caloso/patologia , Mutação , Proteínas do Tecido Nervoso/genética , Aborto Eugênico , Adulto , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Autopsia , Hibridização Genômica Comparativa , Corpo Caloso/metabolismo , Feminino , Feto , Expressão Gênica , Humanos , Masculino , Gravidez , Estudos Retrospectivos , Ultrassonografia Pré-Natal
17.
Nat Genet ; 39(4): 454-6, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17353897

RESUMO

Neural progenitor proliferation and migration influence brain size during neurogenesis. We report an autosomal recessive microcephaly syndrome cosegregating with a homozygous balanced translocation between chromosomes 3p and 10q, and we show that a position effect at the breakpoint on chromosome 3 silences the eomesodermin transcript (EOMES), also known as T-box-brain2 (TBR2). Together with the expression pattern of EOMES in the developing human brain, our data suggest that EOMES is involved in neuronal division and/or migration. Thus, mutations in genes encoding not only mitotic and apoptotic proteins but also transcription factors may be responsible for malformative microcephaly syndromes.


Assuntos
Agenesia do Corpo Caloso , Inativação Gênica , Homozigoto , Microcefalia/genética , Proteínas com Domínio T/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cromossomos Humanos Par 10 , Cromossomos Humanos Par 3 , Análise Mutacional de DNA , Humanos , Masculino , Linhagem , Translocação Genética
18.
Nat Genet ; 39(7): 875-81, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17558409

RESUMO

Cerebello-oculo-renal syndrome (CORS), also called Joubert syndrome type B, and Meckel (MKS) syndrome belong to the group of developmental autosomal recessive disorders that are associated with primary cilium dysfunction. Using SNP mapping, we identified missense and truncating mutations in RPGRIP1L (KIAA1005) in both CORS and MKS, and we show that inactivation of the mouse ortholog Rpgrip1l (Ftm) recapitulates the cerebral, renal and hepatic defects of CORS and MKS. In addition, we show that RPGRIP1L colocalizes at the basal body and centrosomes with the protein products of both NPHP6 and NPHP4, known genes associated with MKS, CORS and nephronophthisis (a related renal disorder and ciliopathy). In addition, the RPGRIP1L missense mutations found in CORS individuals diminishes the interaction between RPGRIP1L and nephrocystin-4. Our findings show that mutations in RPGRIP1L can cause the multiorgan phenotypic abnormalities found in CORS or MKS, which therefore represent a continuum of the same underlying disorder.


Assuntos
Doenças Cerebelares/genética , Transtornos da Motilidade Ciliar/genética , Encefalocele/genética , Oftalmopatias/genética , Nefropatias/genética , Proteínas/genética , Animais , Criança , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Mutantes , Mutação Puntual , Síndrome
19.
Am J Hum Genet ; 91(6): 1135-43, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23217329

RESUMO

Cobblestone lissencephaly is a peculiar brain malformation with characteristic radiological anomalies. It is defined as cortical dysplasia that results when neuroglial overmigration into the arachnoid space forms an extracortical layer that produces agyria and/or a "cobblestone" brain surface and ventricular enlargement. Cobblestone lissencephaly is pathognomonic of a continuum of autosomal-recessive diseases characterized by cerebral, ocular, and muscular deficits. These include Walker-Warburg syndrome, muscle-eye-brain disease, and Fukuyama muscular dystrophy. Mutations in POMT1, POMT2, POMGNT1, LARGE, FKTN, and FKRP identified these diseases as alpha-dystroglycanopathies. Our exhaustive screening of these six genes, in a cohort of 90 fetal cases, led to the identification of a mutation in only 53% of the families, suggesting that other genes might also be involved. We therefore decided to perform a genome-wide study in two multiplex families. This allowed us to identify two additional genes: TMEM5 and ISPD. Because TMEM has a glycosyltransferase domain and ISPD has an isoprenoid synthase domain characteristic of nucleotide diP-sugar transferases, these two proteins are thought to be involved in the glycosylation of dystroglycan. Further screening of 40 families with cobblestone lissencephaly identified nonsense and frameshift mutations in another four unrelated cases for each gene, increasing the mutational rate to 64% in our cohort. All these cases displayed a severe phenotype of cobblestone lissencephaly A. TMEM5 mutations were frequently associated with gonadal dysgenesis and neural tube defects, and ISPD mutations were frequently associated with brain vascular anomalies.


Assuntos
Lissencefalia Cobblestone/genética , Proteínas de Membrana/genética , Mutação , Nucleotidiltransferases/genética , Alelos , Lissencefalia Cobblestone/diagnóstico , Consanguinidade , Éxons , Família , Feto/metabolismo , Feto/patologia , Ordem dos Genes , Genótipo , Humanos , Íntrons , Pentosiltransferases
20.
Am J Hum Genet ; 91(2): 372-8, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22883145

RESUMO

Orofaciodigital syndromes (OFDSs) consist of a group of heterogeneous disorders characterized by abnormalities in the oral cavity, face, and digits and associated phenotypic abnormalities that lead to the delineation of 13 OFDS subtypes. Here, by a combined approach of homozygozity mapping and exome ciliary sequencing, we identified truncating TCTN3 mutations as the cause of an extreme form of OFD associated with bone dysplasia, tibial defect, cystic kidneys, and brain anomalies (OFD IV, Mohr-Majewski syndrome). Analysis of 184 individuals with various ciliopathies (OFD, Meckel, Joubert, and short rib polydactyly syndromes) led us to identify four additional truncating TCTN3 mutations in unrelated fetal cases with overlapping Meckel and OFD IV syndromes and one homozygous missense mutation in a family with Joubert syndrome. By exploring roles of TCTN3 in human ciliary related functions, we found that TCTN3 is necessary for transduction of the sonic hedgehog (SHH) signaling pathway, as revealed by abnormal processing of GLI3 in patient cells. These results are consistent with the suggested role of its murine ortholog, which forms a complex at the ciliary transition zone with TCTN1 and TCTN2, both of which are also implicated in the transduction of SHH signaling. Overall, our data show the involvement of the transition zone protein TCTN3 in the regulation of the key SHH signaling pathway and that its disruption causes a severe form of ciliopathy, combining features of Meckel and OFD IV syndromes.


Assuntos
Fissura Palatina/genética , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Síndromes Orofaciodigitais/genética , Fenótipo , Proteínas Adaptadoras de Transdução de Sinal , Adolescente , Proteínas Reguladoras de Apoptose , Sequência de Bases , Cerebelo/anormalidades , Cerebelo/patologia , Criança , Fissura Palatina/patologia , Exoma/genética , Feto/patologia , Deformidades Congênitas do Pé/patologia , Deformidades Congênitas da Mão/patologia , Proteínas Hedgehog/metabolismo , Homozigoto , Humanos , Dados de Sequência Molecular , Mutação/genética , Síndromes Orofaciodigitais/patologia , Análise de Sequência de DNA , Transdução de Sinais/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA