Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biochemistry ; 63(2): 230-240, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38150593

RESUMO

The first step of histidine biosynthesis in Acinetobacter baumannii, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate to produce N1-(5-phospho-ß-d-ribosyl)-ATP (PRATP) and pyrophosphate, is catalyzed by the hetero-octameric enzyme ATP phosphoribosyltransferase, a promising target for antibiotic design. The catalytic subunit, HisGS, is allosterically activated upon binding of the regulatory subunit, HisZ, to form the hetero-octameric holoenzyme (ATPPRT), leading to a large increase in kcat. Here, we present the crystal structure of ATPPRT, along with kinetic investigations of the rate-limiting steps governing catalysis in the nonactivated (HisGS) and activated (ATPPRT) forms of the enzyme. A pH-rate profile showed that maximum catalysis is achieved above pH 8.0. Surprisingly, at 25 °C, kcat is higher when ADP replaces ATP as substrate for ATPPRT but not for HisGS. The HisGS-catalyzed reaction is limited by the chemical step, as suggested by the enhancement of kcat when Mg2+ was replaced by Mn2+, and by the lack of a pre-steady-state burst of product formation. Conversely, the ATPPRT-catalyzed reaction rate is determined by PRATP diffusion from the active site, as gleaned from a substantial solvent viscosity effect. A burst of product formation could be inferred from pre-steady-state kinetics, but the first turnover was too fast to be directly observed. Lowering the temperature to 5 °C allowed observation of the PRATP formation burst by ATPPRT. At this temperature, the single-turnover rate constant was significantly higher than kcat, providing additional evidence for a step after chemistry limiting catalysis by ATPPRT. This demonstrates allosteric activation by HisZ accelerates the chemical step.


Assuntos
ATP Fosforribosiltransferase , Acinetobacter baumannii , ATP Fosforribosiltransferase/química , Difosfatos , Acinetobacter baumannii/metabolismo , Domínio Catalítico , Cinética , Trifosfato de Adenosina/metabolismo , Catálise
2.
Commun Chem ; 7(1): 77, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582930

RESUMO

Heavy-isotope substitution into enzymes slows down bond vibrations and may alter transition-state barrier crossing probability if this is coupled to fast protein motions. ATP phosphoribosyltransferase from Acinetobacter baumannii is a multi-protein complex where the regulatory protein HisZ allosterically enhances catalysis by the catalytic protein HisGS. This is accompanied by a shift in rate-limiting step from chemistry to product release. Here we report that isotope-labelling of HisGS has no effect on the nonactivated reaction, which involves negative activation heat capacity, while HisZ-activated HisGS catalytic rate decreases in a strictly mass-dependent fashion across five different HisGS masses, at low temperatures. Surprisingly, the effect is not linked to the chemical step, but to fast motions governing product release in the activated enzyme. Disruption of a specific enzyme-product interaction abolishes the isotope effects. Results highlight how altered protein mass perturbs allosterically modulated thermal motions relevant to the catalytic cycle beyond the chemical step.

3.
ACS Catal ; 13(11): 7669-7679, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37288093

RESUMO

The bifunctional enzyme phosphoribosyl-ATP pyrophosphohydrolase/phosphoribosyl-AMP cyclohydrolase (HisIE) catalyzes the second and third steps of histidine biosynthesis: pyrophosphohydrolysis of N1-(5-phospho-ß-D-ribosyl)-ATP (PRATP) to N1-(5-phospho-ß-D-ribosyl)-AMP (PRAMP) and pyrophosphate in the C-terminal HisE-like domain, and cyclohydrolysis of PRAMP to N-(5'-phospho-D-ribosylformimino)-5-amino-1-(5″-phospho-D-ribosyl)-4-imidazolecarboxamide (ProFAR) in the N-terminal HisI-like domain. Here we use UV-VIS spectroscopy and LC-MS to show Acinetobacter baumannii putative HisIE produces ProFAR from PRATP. Employing an assay to detect pyrophosphate and another to detect ProFAR, we established the pyrophosphohydrolase reaction rate is higher than the overall reaction rate. We produced a truncated version of the enzyme-containing only the C-terminal (HisE) domain. This truncated HisIE was catalytically active, which allowed the synthesis of PRAMP, the substrate for the cyclohydrolysis reaction. PRAMP was kinetically competent for HisIE-catalyzed ProFAR production, demonstrating PRAMP can bind the HisI-like domain from bulk water, and suggesting that the cyclohydrolase reaction is rate-limiting for the overall bifunctional enzyme. The overall kcat increased with increasing pH, while the solvent deuterium kinetic isotope effect decreased at more basic pH but was still large at pH 7.5. The lack of solvent viscosity effects on kcat and kcat/KM ruled out diffusional steps limiting the rates of substrate binding and product release. Rapid kinetics with excess PRATP demonstrated a lag time followed by a burst in ProFAR formation. These observations are consistent with a rate-limiting unimolecular step involving a proton transfer following adenine ring opening. We synthesized N1-(5-phospho-ß-D-ribosyl)-ADP (PRADP), which could not be processed by HisIE. PRADP inhibited HisIE-catalyzed ProFAR formation from PRATP but not from PRAMP, suggesting that it binds to the phosphohydrolase active site while still permitting unobstructed access of PRAMP to the cyclohydrolase active site. The kinetics data are incompatible with a build-up of PRAMP in bulk solvent, indicating HisIE catalysis involves preferential channeling of PRAMP, albeit not via a protein tunnel.

4.
Nat Commun ; 13(1): 7607, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494361

RESUMO

ATP phosphoribosyltransferase catalyses the first step of histidine biosynthesis and is controlled via a complex allosteric mechanism where the regulatory protein HisZ enhances catalysis by the catalytic protein HisGS while mediating allosteric inhibition by histidine. Activation by HisZ was proposed to position HisGS Arg56 to stabilise departure of the pyrophosphate leaving group. Here we report active-site mutants of HisGS with impaired reaction chemistry which can be allosterically restored by HisZ despite the HisZ:HisGS interface lying ~20 Å away from the active site. MD simulations indicate HisZ binding constrains the dynamics of HisGS to favour a preorganised active site where both Arg56 and Arg32 are poised to stabilise leaving-group departure in WT-HisGS. In the Arg56Ala-HisGS mutant, HisZ modulates Arg32 dynamics so that it can partially compensate for the absence of Arg56. These results illustrate how remote protein-protein interactions translate into catalytic resilience by restoring damaged electrostatic preorganisation at the active site.


Assuntos
ATP Fosforribosiltransferase , ATP Fosforribosiltransferase/química , Domínio Catalítico , Histidina/metabolismo , Regulação Alostérica
5.
ACS Infect Dis ; 8(1): 197-209, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34928596

RESUMO

ATP phosphoribosyltransferase (ATPPRT) catalyzes the first step of histidine biosynthesis in bacteria, namely, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate (PRPP) to generate N1-(5-phospho-ß-d-ribosyl)-ATP (PRATP) and pyrophosphate. Catalytic (HisGS) and regulatory (HisZ) subunits assemble in a hetero-octamer where HisZ activates HisGS and mediates allosteric inhibition by histidine. In Acinetobacter baumannnii, HisGS is necessary for the bacterium to persist in the lung during pneumonia. Inhibition of ATPPRT is thus a promising strategy for specific antibiotic development. Here, A. baumannii ATPPRT is shown to follow a rapid equilibrium random kinetic mechanism, unlike any other ATPPRT. Histidine noncompetitively inhibits ATPPRT. Binding kinetics indicates histidine binds to free ATPPRT and to ATPPRT:PRPP and ATPPRT:ATP binary complexes with similar affinity following a two-step binding mechanism, but with distinct kinetic partition of the initial enzyme:inhibitor complex. The dipeptide histidine-proline inhibits ATPPRT competitively and likely uncompetitively, respectively, against PRPP and ATP. Rapid kinetics analysis shows His-Pro binds to the ATPPRT:ATP complex via a two-step binding mechanism. A related HisZ that shares 43% sequence identity with A. baumannii HisZ is a tight-binding allosteric inhibitor of A. baumannii HisGS. These findings lay the foundation for inhibitor design against A. baumannii ATPPRT.


Assuntos
ATP Fosforribosiltransferase , Acinetobacter baumannii , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Acinetobacter baumannii/metabolismo , Dipeptídeos , Histidina , Cinética
6.
ACS Nano ; 16(6): 8954-8966, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35640255

RESUMO

Viruslike particles (VLPs) fabricated using wireframe DNA origami are emerging as promising vaccine and gene therapeutic delivery platforms due to their programmable nature that offers independent control over their size and shape, as well as their site-specific functionalization. As materials that biodegrade in the presence of endonucleases, specifically DNase I and II, their utility for the targeting of cells, tissues, and organs depends on their stability in vivo. Here, we explore minor groove binders (MGBs) as specific endonuclease inhibitors to control the degradation half-life of wireframe DNA origami. Bare, unprotected DNA-VLPs composed of two-helix edges were found to be stable in fetal bovine serum under typical cell culture conditions and in human serum for 24 h but degraded within 3 h in mouse serum, suggesting species-specific endonuclease activity. Inhibiting endonucleases by incubating DNA-VLPs with diamidine-class MGBs increased their half-lives in mouse serum by more than 12 h, corroborated by protection against isolated DNase I and II. Our stabilization strategy was compatible with the functionalization of DNA-VLPs with HIV antigens, did not interfere with B-cell signaling activity of DNA-VLPs in vitro, and was nontoxic to B-cell lines. It was further found to be compatible with multiple wireframe DNA origami geometries and edge architectures. MGB protection is complementary to existing methods such as PEGylation and chemical cross-linking, offering a facile protocol to control DNase-mediated degradation rates for in vitro and possibly in vivo therapeutic and vaccine applications.


Assuntos
Nanoestruturas , Camundongos , Humanos , Animais , Conformação de Ácido Nucleico , DNA , Endonucleases , Desoxirribonuclease I
7.
Cell Rep ; 38(2): 110217, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021101

RESUMO

Nanoparticle (NP) vaccine formulations promote immune responses through multiple mechanisms. We recently reported that mannose-binding lectin (MBL) triggers trafficking of glycosylated HIV Env-immunogen NPs to lymph node follicles. Here, we investigate effects of MBL and complement on NP forms of HIV and other viral antigens. MBL recognition of oligomannose on gp120 nanoparticles significantly increases antigen accumulation in lymph nodes and antigen-specific germinal center (GC) responses. MBL and complement also mediate follicular trafficking and enhance GC responses to influenza, HBV, and HPV particulate antigens. Using model protein nanoparticles bearing titrated levels of glycosylation, we determine that mannose patches at a minimal density of 2.1 × 10-3 mannose patches/nm2 are required to trigger follicular targeting, which increases with increasing glycan density up to at least ∼8.2 × 10-3 patches/nm2. Thus, innate immune recognition of glycans has a significant impact on humoral immunity, and these findings provide a framework for engineering glycan recognition to optimize vaccine efficacy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , HIV-1/imunologia , Lectina de Ligação a Manose/imunologia , Animais , Antígenos/metabolismo , Antígenos Virais/imunologia , Proteínas do Sistema Complemento/metabolismo , Feminino , Centro Germinativo/metabolismo , Glicosilação , HIV-1/efeitos dos fármacos , Humanos , Imunidade Humoral/imunologia , Masculino , Manose , Camundongos , Camundongos Endogâmicos C57BL , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , Nanopartículas , Polissacarídeos/metabolismo
8.
Adv Ther (Weinh) ; 5(7): 2100235, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36311814

RESUMO

Protein antigens are often combined with aluminum hydroxide (alum), the most commonly used adjuvant in licensed vaccines; yet the immunogenicity of alum-adjuvanted vaccines leaves much room for improvement. Here, the authors demonstrate a strategy for codelivering an immunostimulatory cytokine, the interleukin IL-21, with an engineered outer domain (eOD) human immunodeficiency virus gp120 Env immunogen eOD, bound together to alum to bolster the humoral immune response. In this approach, the immunogen and cytokine are co-anchored to alum particles via a short phosphoserine (pSer) peptide linker, promoting stable binding to alum and sustained bioavailability following injection. pSer-modified eOD and IL-21 promote enhanced lymphatic drainage and lead to accumulation of the vaccine in B cell follicles in the draining lymph nodes. This in turn promotes enhanced T follicular helper cell priming and robust germinal center responses as well as increased antigen-specific serum IgG titers. This is a general strategy for codelivery of immunostimulatory cytokine with immunogens providing a facile approach to modulate T cell priming and GC reactions toward enhanced protective immunity using the most common clinical vaccine adjuvant.

9.
ACS Nano ; 15(9): 14316-14322, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34490781

RESUMO

DNA origami is a powerful nanomaterial for biomedical applications due in part to its capacity for programmable, site-specific functionalization. To realize these applications, scalable and efficient conjugation protocols are needed for diverse moieties ranging from small molecules to biomacromolecules. Currently, there are no facile and general methods for in situ covalent modification and label-free quantification of reaction conversion. Here, we investigate the postassembly functionalization of DNA origami and the subsequent high-performance liquid chromatography-based characterization of these nanomaterials. Following this approach, we developed a versatile DNA origami functionalization and characterization platform. We observed quantitative in situ conversion using widely accessible click chemistry for carbohydrates, small molecules, peptides, polymers, and proteins. This platform should provide broader access to covalently functionalized DNA origami, as illustrated here by PEGylation for passivation and HIV antigen decoration to construct virus-like particle vaccines.


Assuntos
DNA , Nanoestruturas , DNA/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Conformação de Ácido Nucleico
10.
Curr Opin Immunol ; 65: 1-6, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32200132

RESUMO

Strategies to qualitatively and quantitatively enhance the humoral response to immunizations with protein and polysaccharide antigens are of broad interest for development of new and more effective vaccines. A strategy of increasing importance is the formulation of antigens into a particulate format, mimicking the physical form of viruses. The potential benefits of enhanced B cell receptor engagement by nanoparticles have been long been appreciated, but recent studies are defining additional important factors governing how nanoparticle immunogens interact with the immune system in the context of lymphoid organs. This review will discuss findings about how nanoparticles enhance humoral immunity in vivo and factors governing the fate of nanoparticle immunogens in lymph nodes.


Assuntos
Antígenos/imunologia , Imunidade Humoral/imunologia , Nanopartículas/química , Vacinas/imunologia , Animais , Humanos
11.
ACS Catal ; 10(24): 15019-15032, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33391858

RESUMO

The enzyme (R)-3-hydroxybutyrate dehydrogenase (HBDH) catalyzes the enantioselective reduction of 3-oxocarboxylates to (R)-3-hydroxycarboxylates, the monomeric precursors of biodegradable polyesters. Despite its application in asymmetric reduction, which prompted several engineering attempts of this enzyme, the order of chemical events in the active site, their contributions to limit the reaction rate, and interactions between the enzyme and non-native 3-oxocarboxylates have not been explored. Here, a combination of kinetic isotope effects, protein crystallography, and quantum mechanics/molecular mechanics (QM/MM) calculations were employed to dissect the HBDH mechanism. Initial velocity patterns and primary deuterium kinetic isotope effects establish a steady-state ordered kinetic mechanism for acetoacetate reduction by a psychrophilic and a mesophilic HBDH, where hydride transfer is not rate limiting. Primary deuterium kinetic isotope effects on the reduction of 3-oxovalerate indicate that hydride transfer becomes more rate limiting with this non-native substrate. Solvent and multiple deuterium kinetic isotope effects suggest hydride and proton transfers occur in the same transition state. Crystal structures were solved for both enzymes complexed to NAD+:acetoacetate and NAD+:3-oxovalerate, illustrating the structural basis for the stereochemistry of the 3-hydroxycarboxylate products. QM/MM calculations using the crystal structures as a starting point predicted a higher activation energy for 3-oxovalerate reduction catalyzed by the mesophilic HBDH, in agreement with the higher reaction rate observed experimentally for the psychrophilic orthologue. Both transition states show concerted, albeit not synchronous, proton and hydride transfers to 3-oxovalerate. Setting the MM partial charges to zero results in identical reaction activation energies with both orthologues, suggesting the difference in activation energy between the reactions catalyzed by cold- and warm-adapted HBDHs arises from differential electrostatic stabilization of the transition state. Mutagenesis and phylogenetic analysis reveal the catalytic importance of His150 and Asn145 in the respective orthologues.

12.
Nat Nanotechnol ; 15(8): 716-723, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32601450

RESUMO

Vaccine efficacy can be increased by arraying immunogens in multivalent form on virus-like nanoparticles to enhance B-cell activation. However, the effects of antigen copy number, spacing and affinity, as well as the dimensionality and rigidity of scaffold presentation on B-cell activation remain poorly understood. Here, we display the clinical vaccine immunogen eOD-GT8, an engineered outer domain of the HIV-1 glycoprotein-120, on DNA origami nanoparticles to systematically interrogate the impact of these nanoscale parameters on B-cell activation in vitro. We find that B-cell signalling is maximized by as few as five antigens maximally spaced on the surface of a 40-nm viral-like nanoparticle. Increasing antigen spacing up to ~25-30 nm monotonically increases B-cell receptor activation. Moreover, scaffold rigidity is essential for robust B-cell triggering. These results reveal molecular vaccine design principles that may be used to drive functional B-cell responses.


Assuntos
Antígenos Virais/imunologia , Linfócitos B/imunologia , DNA/ultraestrutura , Ativação Linfocitária/imunologia , Nanoestruturas/ultraestrutura , Vacinas contra a AIDS , Animais , Antígenos Virais/química , Antígenos Virais/ultraestrutura , Linhagem Celular , DNA/química , Feminino , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Camundongos , Nanoestruturas/química , Conformação de Ácido Nucleico , Transdução de Sinais
13.
Science ; 363(6427): 649-654, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30573546

RESUMO

In vaccine design, antigens are often arrayed in a multivalent nanoparticle form, but in vivo mechanisms underlying the enhanced immunity elicited by such vaccines remain poorly understood. We compared the fates of two different heavily glycosylated HIV antigens, a gp120-derived mini-protein and a large, stabilized envelope trimer, in protein nanoparticle or "free" forms after primary immunization. Unlike monomeric antigens, nanoparticles were rapidly shuttled to the follicular dendritic cell (FDC) network and then concentrated in germinal centers in a complement-, mannose-binding lectin (MBL)-, and immunogen glycan-dependent manner. Loss of FDC localization in MBL-deficient mice or via immunogen deglycosylation significantly affected antibody responses. These findings identify an innate immune-mediated recognition pathway promoting antibody responses to particulate antigens, with broad implications for humoral immunity and vaccine design.


Assuntos
Vacinas contra a AIDS/imunologia , Formação de Anticorpos , Centro Germinativo/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Imunidade Inata , Polissacarídeos/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Testes de Fixação de Complemento , Proteínas do Sistema Complemento/imunologia , Células Dendríticas/imunologia , Feminino , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , Lipossomos , Lectina de Ligação a Manose/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Complexos Multiproteicos , Nanopartículas , Receptores de Complemento/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA