Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Ecol Appl ; 32(1): e02473, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652876

RESUMO

A growing number of weed species have evolved resistance to herbicides in recent years, which causes an immense financial burden to farmers. An increasingly popular method of weed control is the adoption of crops that are resistant to specific herbicides, which allows farmers to apply the herbicide during the growing season without harming the crop. If such crops are planted in the presence of closely related weed species, it is possible that resistance genes could transfer from the crop species to feral populations of the wild species via gene flow and become stably introgressed under ongoing selective pressure by the herbicide. We use a density-dependent matrix model to evaluate the effect of planting such crops on the evolution of herbicide resistance under a range of management scenarios. Our model expands on previous simulation studies by considering weed species with a more complex life cycle (perennial, rhizomatous weed species), studying the effect of environmental variation in herbicide effectiveness, and evaluating the role of common simplifying genetic assumptions on resistance evolution. Our model predictions are qualitatively similar to previous modeling studies using species with a simpler life cycle, which is, crop rotation in combination with rotation of herbicide site of action effectively controls weed populations and slows the evolution of herbicide resistance. We find that ignoring the effect of environmental variation can lead to an over- or under-prediction of the speed of resistance evolution. The effect of environmental variation in herbicide effectiveness depends on the resistance allele frequency in the weed population at the beginning of the simulation. Finally, we find that degree of dominance and ploidy level have a much larger effect on the predicted speed of resistance evolution compared to the rate of gene flow.


Assuntos
Resistência a Herbicidas , Herbicidas , Animais , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Estágios do Ciclo de Vida , Plantas Daninhas/genética , Controle de Plantas Daninhas/métodos
2.
J Math Biol ; 82(6): 50, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33847821

RESUMO

Ecologists have recently used integral projection models (IPMs) to study fish and other animals which continue to grow throughout their lives. Such animals cannot shrink, since they have bony skeletons; a mathematical consequence of this is that the kernel of the integral projection operator T is unbounded, and the operator is not compact. To our knowledge, all theoretical work done on IPMs has assumed the operator is compact, and in particular has a bounded kernel. A priori, it is unclear whether these IPMs have an asymptotic growth rate [Formula: see text], or a stable-stage distribution [Formula: see text]. In the case of a compact operator, these quantities are its spectral radius and the associated eigenvector, respectively. Under biologically reasonable assumptions, we prove that the non-compact operators in these IPMs share some important traits with their compact counterparts: the operator T has a unique positive eigenvector [Formula: see text] corresponding to its spectral radius [Formula: see text], this [Formula: see text] is strictly greater than the supremum of the modulus of all other spectral values, and for any nonnegative initial population [Formula: see text], there is a [Formula: see text] such that [Formula: see text].


Assuntos
Ecologia , Modelos Biológicos , Animais
3.
Bull Math Biol ; 81(10): 3732-3753, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31332599

RESUMO

We present a length-structured matrix model for fish populations in which the probability that a fish grows into the next length class is a decreasing nonlinear function of the total biomass of the population. We present mathematical results classifying the dynamics that this density-dependent model predicts. We illustrate these results with numerical simulations for an invasive white perch population and show how the mathematical results can be used to predict the persistence and/or boundedness of the population as well as an equilibrium structure that is dominated by small fish. We illustrate the results with management recommendations for an invasive white perch population.


Assuntos
Peixes/crescimento & desenvolvimento , Modelos Biológicos , Animais , Bass/crescimento & desenvolvimento , Bass/fisiologia , Biomassa , Simulação por Computador , Feminino , Fertilidade , Peixes/fisiologia , Espécies Introduzidas/estatística & dados numéricos , Masculino , Conceitos Matemáticos , Dinâmica não Linear , Densidade Demográfica , Dinâmica Populacional/estatística & dados numéricos , Crescimento Demográfico
5.
J Math Biol ; 70(5): 1015-63, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24792227

RESUMO

We present a novel management methodology for restocking a declining population. The strategy uses integral control, a concept ubiquitous in control theory which has not been applied to population dynamics. Integral control is based on dynamic feedback-using measurements of the population to inform management strategies and is robust to model uncertainty, an important consideration for ecological models. We demonstrate from first principles why such an approach to population management is suitable via theory and examples.


Assuntos
Conservação dos Recursos Naturais/métodos , Dinâmica Populacional , Animais , Biodiversidade , Conservação dos Recursos Naturais/estatística & dados numéricos , Ecossistema , Retroalimentação , Feminino , Conceitos Matemáticos , Modelos Biológicos , Dinâmica Populacional/estatística & dados numéricos , Processos Estocásticos , Sus scrofa
6.
Theor Popul Biol ; 97: 49-56, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25174884

RESUMO

When vital rates depend on population structure (e.g., relative frequencies of males or females), an important question is how the long-term population growth rate λ responds to changes in rates. For instance, availability of mates may depend on the sex ratio of the population and hence reproductive rates could be frequency-dependent. In such cases change in any vital rate alters the structure, which in turn, affect frequency-dependent rates. We show that the elasticity of λ to a rate is the sum of (i) the effect of the linear change in the rate and (ii) the effect of nonlinear changes in frequency-dependent rates. The first component is always positive and is the classical elasticity in density-independent models obtained directly from the population projection matrix. The second component can be positive or negative and is absent in density-independent models. We explicitly express each component of the elasticity as a function of vital rates, eigenvalues and eigenvectors of the population projection matrix. We apply this result to a two-sex model, where male and female fertilities depend on adult sex ratio α (ratio of females to males) and the mating system (e.g., polygyny) through a harmonic mating function. We show that the nonlinear component of elasticity to a survival rate is negligible only when the average number of mates (per male) is close to α. In a strictly monogamous species, elasticity to female survival is larger than elasticity to male survival when α<1 (less females). In a polygynous species, elasticity to female survival can be larger than that of male survival even when sex ratio is female biased. Our results show how demography and mating system together determine the response to selection on sex-specific vital rates.


Assuntos
Frequência do Gene , Genética Populacional , Modelos Biológicos , Razão de Masculinidade , Comportamento Sexual Animal , Animais , Feminino , Masculino , Crescimento Demográfico
7.
Theor Popul Biol ; 92: 88-96, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24373938

RESUMO

Sink populations are doomed to decline to extinction in the absence of immigration. The dynamics of sink populations are not easily modelled using the standard framework of per capita rates of immigration, because numbers of immigrants are determined by extrinsic sources (for example, source populations, or population managers). Here we appeal to a systems and control framework to place upper and lower bounds on both the transient and future dynamics of sink populations that are subject to noisy immigration. Immigration has a number of interpretations and can fit a wide variety of models found in the literature. We apply the results to case studies derived from published models for Chinook salmon (Oncorhynchus tshawytscha) and blowout penstemon (Penstemon haydenii).


Assuntos
Migração Animal , Modelos Teóricos , Salmão/fisiologia , Animais , Dinâmica Populacional
8.
Bull Math Biol ; 76(7): 1809-34, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24916367

RESUMO

In many plant species dormant seeds can persist in the soil for one to several years. The formation of these seed banks is especially important for disturbance specialist plants, as seeds of these species germinate only in disturbed soil. Seed movement caused by disturbances affects the survival and germination probability of seeds in the seed bank, which subsequently affect population dynamics. In this paper, we develop a stochastic integral projection model for a general disturbance specialist plant-seed bank population that takes into account both the frequency and intensity of random disturbances, as well as vertical seed movement and density-dependent seedling establishment. We show that the probability measures associated with the plant-seed bank population converge weakly to a unique measure, independent of initial population. We also show that the population either persists with probability one or goes extinct with probability one, and provides a sharp criteria for this dichotomy. We apply our results to an example motivated by wild sunflower (Helianthus annuus) populations, and explore how the presence or absence of a "storage effect" impacts how a population responds to different disturbance scenarios.


Assuntos
Ecossistema , Modelos Teóricos , Sementes/crescimento & desenvolvimento , Helianthus/crescimento & desenvolvimento
9.
J Math Biol ; 69(1): 1-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23712394

RESUMO

Many plant populations have persistent seed banks, which consist of viable seeds that remain dormant in the soil for many years. Seed banks are important for plant population dynamics because they buffer against environmental perturbations and reduce the probability of extinction. Viability of the seeds in the seed bank can depend on the seed's age, hence it is important to keep track of the age distribution of seeds in the seed bank. In this paper we construct a general density-dependent plant-seed bank model where the seed bank is age-structured. We consider density dependence in both seedling establishment and seed production, since previous work has highlighted that overcrowding can suppress both of these processes. Under certain assumptions on the density dependence, we prove that there is a globally stable equilibrium population vector which is independent of the initial state. We derive an analytical formula for the equilibrium population using methods from feedback control theory. We apply these results to a model for the plant species Cirsium palustre and its seed bank.


Assuntos
Asteraceae , Ecossistema , Modelos Biológicos , Sementes
10.
Am Nat ; 182(2): 180-90, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23852353

RESUMO

Seed banks are critically important for disturbance specialist plants because seeds of these species germinate only in disturbed soil. Disturbance and seed depth affect the survival and germination probability of seeds in the seed bank, which in turn affect population dynamics. We develop a density-dependent stochastic integral projection model to evaluate the effect of stochastic soil disturbances on plant population dynamics with an emphasis on mimicking how disturbances vertically redistribute seeds within the seed bank. We perform a simulation analysis of the effect of the frequency and mean depth of disturbances on the population's quasi-extinction probability, as well as the long-term mean and variance of the total density of seeds in the seed bank. We show that increasing the frequency of disturbances increases the long-term viability of the population, but the relationship between the mean depth of disturbance and the long-term viability of the population are not necessarily monotonic for all parameter combinations. Specifically, an increase in the probability of disturbance increases the long-term viability of the total seed bank population. However, if the probability of disturbance is too low, a shallower mean depth of disturbance can increase long-term viability, a relationship that switches as the probability of disturbance increases. However, a shallow disturbance depth is beneficial only in scenarios with low survival in the seed bank.


Assuntos
Ecossistema , Modelos Biológicos , Sementes , Extinção Biológica , Germinação , Plantas , Dinâmica Populacional
11.
Theor Popul Biol ; 81(1): 81-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22142718

RESUMO

Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium.


Assuntos
Modelos Teóricos , Dinâmica Populacional
12.
J Biol Dyn ; 15(sup1): S168-S189, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33345729

RESUMO

We use a mixed time model to study the dynamics of a system consisting of two consumers that reproduce only in annual birth pulses, possibly at different times, with interaction limited to competition for a resource that reproduces continuously. Ecological theory predicts competitive exclusion; this expectation is met under most circumstances, the winner being the species with the greater 'power', defined as the time average consumer level at the fixed point. Instability of that fixed point for the stronger competitor slightly weakens its domination, so that a resident species with an unstable fixed point can sometimes be invaded by a slightly weaker species, leading ultimately to coexistence. Differences in birth pulse times can lead to qualitatively different long-term coexistence behaviour, including cycles of different lengths or chaos. We also determine conditions under which the timing of an annual pulse of a toxin can change the balance of power.


Assuntos
Ecossistema , Modelos Biológicos , Comportamento Competitivo , Dinâmica Populacional
13.
Ecology ; 90(7): 1878-90, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19694136

RESUMO

Stage-structured population models predict transient population dynamics if the population deviates from the stable stage distribution. Ecologists' interest in transient dynamics is growing because populations regularly deviate from the stable stage distribution, which can lead to transient dynamics that differ significantly from the stable stage dynamics. Because the structure of a population matrix (i.e., the number of life-history stages) can influence the predicted scale of the deviation, we explored the effect of matrix size on predicted transient dynamics and the resulting amplification of population size. First, we experimentally measured the transition rates between the different life-history stages and the adult fecundity and survival of the aphid, Acythosiphon pisum. Second, we used these data to parameterize models with different numbers of stages. Third, we compared model predictions with empirically measured transient population growth following the introduction of a single adult aphid. We find that the models with the largest number of life-history stages predicted the largest transient population growth rates, but in all models there was a considerable discrepancy between predicted and empirically measured transient peaks and a dramatic underestimation of final population sizes. For instance, the mean population size after 20 days was 2394 aphids compared to the highest predicted population size of 531 aphids; the predicted asymptotic growth rate (lamdamax) was consistent with the experiments. Possible explanations for this discrepancy are discussed.


Assuntos
Afídeos/fisiologia , Modelos Biológicos , Animais , Ecossistema , Dinâmica Populacional
14.
Theor Popul Biol ; 75(2-3): 85-97, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19105968

RESUMO

We consider discrete time linear population models of the form n(t+1)=An(t) where A is a population projection matrix or integral projection operator, and n(t) represents a structured population at time t. It is well known that the asymptotic growth or decay rate of n(t) is determined by the leading eigenvalue of A. In practice, population models have substantial parameter uncertainty, and it might be difficult to quantify the effect of this uncertainty on the leading eigenvalue. For a large class of matrices and integral operators A, we give sufficient conditions for an eigenvalue to be the leading eigenvalue. By preselecting the leading eigenvalue to be equal to 1, this allows us to easily identify, which combination of parameters, within the confines of their uncertainty, lead to asymptotic growth, and which lead to asymptotic decay. We then apply these results to the analysis of uncertainty in both a matrix model and an integral model for a population of thistles. We show these results can be generalized to any preselected leading eigenvalue.


Assuntos
Modelos Teóricos , Incerteza , Magnoliopsida/crescimento & desenvolvimento , Crescimento Demográfico
15.
Sci Total Environ ; 682: 426-436, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31128362

RESUMO

Assessing and managing risks of anthropogenic activities to ecological systems is necessary to ensure sustained delivery of ecosystem services for future generations. Ecological models provide a means of quantitatively linking measured risk assessment endpoints with protection goals, by integrating potential chemical effects with species life history, ecological interactions, environmental drivers and other potential stressors. Here we demonstrate how an ecosystem modeling approach can be used to quantify insecticide-induced impacts on ecosystem services provided by a lake from toxicity data for organism-level endpoints. We used a publicly available aquatic ecosystem model AQUATOX that integrates environmental fate of chemicals and their impacts on food webs in aquatic environments. By simulating a range of exposure patterns, we illustrated how exposure to a hypothetical insecticide could affect aquatic species populations (e.g., recreational fish abundance) and environmental properties (e.g., water clarity) that would in turn affect delivery of ecosystem services. Different results were observed for different species of fish, thus the decision to manage the use of the insecticide for ecosystem services derived by anglers depends upon the favored species of fish. In our hypothetical shallow reservoir, water clarity was mostly driven by changes in food web dynamics, specifically the presence of zooplankton. In contrast to the complex response by fishing value, water clarity increased with reduced insecticide use, which produced a monotonic increase in value by waders and swimmers. Our study clearly showed the importance of considering nonlinear ecosystem feedbacks where the presence of insecticide changed the modeled food-web dynamics in unexpected ways. Our study highlights one of the main advantages of using ecological models for risk assessment, namely the ability to generalize to meaningful levels of organization and to facilitate quantitative comparisons among alternative scenarios and associated trade-offs among them while explicitly accounting for different groups of beneficiaries.


Assuntos
Organismos Aquáticos/fisiologia , Monitoramento Ambiental , Inseticidas/toxicidade , Poluentes Químicos da Água/toxicidade , Ecossistema , Cadeia Alimentar , Lagos , Modelos Teóricos , Medição de Risco
16.
Sci Total Environ ; 649: 949-959, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179823

RESUMO

We demonstrate how mechanistic modeling can be used to predict whether and how biological responses to chemicals at (sub)organismal levels in model species (i.e., what we typically measure) translate into impacts on ecosystem service delivery (i.e., what we care about). We consider a hypothetical case study of two species of trout, brown trout (Salmo trutta; BT) and greenback cutthroat trout (Oncorhynchus clarkii stomias; GCT). These hypothetical populations live in a high-altitude river system and are exposed to human-derived estrogen (17α­ethinyl estradiol, EE2), which is the bioactive estrogen in many contraceptives. We use the individual-based model inSTREAM to explore how seasonally varying concentrations of EE2 could influence male spawning and sperm quality. Resulting impacts on trout recruitment and the consequences of such for anglers and for the continued viability of populations of GCT (the state fish of Colorado) are explored. inSTREAM incorporates seasonally varying river flow and temperature, fishing pressure, the influence of EE2 on species-specific demography, and inter-specific competition. The model facilitates quantitative exploration of the relative importance of endocrine disruption and inter-species competition on trout population dynamics. Simulations predicted constant EE2 loading to have more impacts on GCT than BT. However, increasing removal of BT by anglers can enhance the persistence of GCT and offset some of the negative effects of EE2. We demonstrate how models that quantitatively link impacts of chemicals and other stressors on individual survival, growth, and reproduction to consequences for populations and ecosystem service delivery, can be coupled with ecosystem service valuation. The approach facilitates interpretation of toxicity data in an ecological context and gives beneficiaries of ecosystem services a more explicit role in management decisions. Although challenges remain, this type of approach may be particularly helpful for site-specific risk assessments and those in which tradeoffs and synergies among ecosystem services need to be considered.


Assuntos
Disruptores Endócrinos/efeitos adversos , Exposição Ambiental , Etinilestradiol/efeitos adversos , Truta/metabolismo , Poluentes Químicos da Água/efeitos adversos , Animais , Masculino , Modelos Biológicos , Oncorhynchus/metabolismo , Reprodução/efeitos dos fármacos , Estações do Ano , Espermatozoides/efeitos dos fármacos
17.
Environ Toxicol Chem ; 36(4): 845-859, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28370293

RESUMO

Protection of ecosystem services is increasingly emphasized as a risk-assessment goal, but there are wide gaps between current ecological risk-assessment endpoints and potential effects on services provided by ecosystems. The authors present a framework that links common ecotoxicological endpoints to chemical impacts on populations and communities and the ecosystem services that they provide. This framework builds on considerable advances in mechanistic effects models designed to span multiple levels of biological organization and account for various types of biological interactions and feedbacks. For illustration, the authors introduce 2 case studies that employ well-developed and validated mechanistic effects models: the inSTREAM individual-based model for fish populations and the AQUATOX ecosystem model. They also show how dynamic energy budget theory can provide a common currency for interpreting organism-level toxicity. They suggest that a framework based on mechanistic models that predict impacts on ecosystem services resulting from chemical exposure, combined with economic valuation, can provide a useful approach for informing environmental management. The authors highlight the potential benefits of using this framework as well as the challenges that will need to be addressed in future work. Environ Toxicol Chem 2017;36:845-859. © 2017 SETAC.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Modelos Teóricos , Gestão de Riscos , Animais , Conservação dos Recursos Naturais/economia , Análise Custo-Benefício , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Peixes/crescimento & desenvolvimento , Peixes/metabolismo , Água Doce/análise , Água Doce/química , Praguicidas/toxicidade , Medição de Risco/métodos , Gestão de Riscos/métodos , Gestão de Riscos/organização & administração , Qualidade da Água
18.
Math Biosci ; 282: 34-45, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27712991

RESUMO

Sensitivity and elasticity analyzes have become central to the analysis of models in population biology and ecology. While much work has been done applying sensitivity and elasticity analysis to study density-independent (linear) matrix and integral projection models, little work has been done to study the sensitivity and elasticity of density-dependent models, especially integral projection models. In this paper we derive sensitivity and elasticity formulas for the equilibrium population n* of a structured population modeled by a Lur'e system, which consists of a linear system plus a nonlinearity modeling density-dependent fecundity. Sensitivity and elasticity formulas are easy to interpret ecologically, and we apply these formulas to published models for Chinook Salmon and Platte thistle (Cirsium canescens). In the C. canescens example we show that models with identical equilibrium populations can have sensitivities that are an order-of-magnitude apart, depending on the functional form for the nonlinearity.


Assuntos
Modelos Teóricos , Dinâmica Populacional , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA