Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Pharmacol Toxicol ; 62: 301-322, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34555289

RESUMO

Since the spread of tobacco from the Americas hundreds of years ago, tobacco cigarettes and, more recently, alternative tobacco products have become global products of nicotine addiction. Within the evolving alternative tobacco product space, electronic cigarette (e-cigarette) vaping has surpassed conventional cigarette smoking among adolescents and young adults in the United States and beyond. This review describes the experimental and clinical evidence of e-cigarette toxicity and deleterious health effects. Adverse health effects related to e-cigarette aerosols are influenced by several factors, including e-liquid components, physical device factors, chemical changes related to heating, and health of the e-cigarette user (e.g., asthmatic). Federal, state, and local regulations have attempted to govern e-cigarette flavors, manufacturing, distribution, and availability, particularly to underaged youths. However, the evolving e-cigarette landscape continues to impede timely toxicological studies and hinder progress made toward our understanding of the long-term health consequence of e-cigarettes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Adolescente , Humanos , Estados Unidos , Vaping/efeitos adversos , Adulto Jovem
2.
Curr Allergy Asthma Rep ; 23(2): 67-76, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36525159

RESUMO

PURPOSE OF REVIEW: Asthma is a heterogenous respiratory disease characterized by airway inflammation and obstruction. However, the causes of asthma are unknown. Several studies have reported microbial and metabolomic dysbiosis in asthmatic patients; but, little is known about the functional role of the microbiota or the host-microbe metabolome in asthma pathophysiology. Current multi-omic studies are linking both the metabolome and microbiome in different organ systems to help identify the interactions involved in asthma, with the goal of better identifying endotypes/phenotypes, causal links, and potential targets of treatment. This review thus endeavors to explore the benefits of and current advances in studying microbiome-metabolome interactions in asthma. RECENT FINDINGS: This is a narrative review of the current state of research surrounding the interaction between the microbiome and metabolome and their role in asthma. Associations with asthma onset, severity, and phenotype have been identified in both the microbiome and the metabolome, most frequently in the gut. More recently, studies have begun to investigate the role of the respiratory microbiome in airway disease and its association with the systemic metabolome, which has provided further insights into its role in asthma phenotypes. This review also identifies gaps in the field in understanding the direct link between respiratory microbiome and metabolome, hypothesizes the benefits for conducting such studies in the future for asthma treatment and prevention, and identifies current analytical limitations that need to be addressed to advance the field. This is a comprehensive review of the current state of research on the interaction between the microbiome and metabolome and their role in asthma.


Assuntos
Asma , Microbiota , Humanos , Metaboloma/fisiologia , Sistema Respiratório , Inflamação
3.
Curr Allergy Asthma Rep ; 23(7): 375-387, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37171670

RESUMO

PURPOSE OF REVIEW: To review the recent literature on the effects of wildfire smoke (WFS) exposure on asthma and allergic disease, and on potential mechanisms of disease. RECENT FINDINGS: Spatiotemporal modeling and increased ground-level monitoring data are allowing a more detailed picture of the health effects of WFS exposure to emerge, especially with regard to asthma. There is also epidemiologic and some experimental evidence to suggest that WFS exposure increases allergic predisposition and upper airway or sinonasal disease, though much of the literature in this area is focused more generally on PM2.5 and is not specific for WFS. Experimental evidence for mechanisms includes disruption of epithelial integrity with downstream effects on inflammatory or immune pathways, but experimental models to date have not consistently reflected human disease in this area. Exposure to WFS has an acute detrimental effect on asthma. Potential mechanisms are suggested by in vitro and animal studies.


Assuntos
Poluentes Atmosféricos , Asma , Incêndios Florestais , Animais , Humanos , Fumaça/efeitos adversos , Exposição Ambiental/efeitos adversos , Asma/etiologia , Nariz/química , Material Particulado/efeitos adversos , Poluentes Atmosféricos/efeitos adversos
4.
Environ Health ; 22(1): 48, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370168

RESUMO

Wildfire smoke is associated with short-term respiratory outcomes including asthma exacerbation in children. As investigations into developmental wildfire smoke exposure on children's longer-term respiratory health are sparse, we investigated associations between developmental wildfire smoke exposure and first use of respiratory medications. Prescription claims from IBM MarketScan Commercial Claims and Encounters database were linked with wildfire smoke plume data from NASA satellites based on Metropolitan Statistical Area (MSA). A retrospective cohort of live infants (2010-2016) born into MSAs in six western states (U.S.A.), having prescription insurance, and whose birthdate was estimable from claims data was constructed (N = 184,703); of these, gestational age was estimated for 113,154 infants. The residential MSA, gestational age, and birthdate were used to estimate average weekly smoke exposure days (smoke-day) for each developmental period: three trimesters, and two sequential 12-week periods post-birth. Medications treating respiratory tract inflammation were classified using active ingredient and mode of administration into three categories:: 'upper respiratory', 'lower respiratory', 'systemic anti-inflammatory'. To evaluate associations between wildfire smoke exposure and medication usage, Cox models associating smoke-days with first observed prescription of each medication category were adjusted for infant sex, birth-season, and birthyear with a random intercept for MSA. Smoke exposure during postnatal periods was associated with earlier first use of upper respiratory medications (1-12 weeks: hazard ratio (HR) = 1.094 per 1-day increase in average weekly smoke-day, 95%CI: (1.005,1.191); 13-24 weeks: HR = 1.108, 95%CI: (1.016,1.209)). Protective associations were observed during gestational windows for both lower respiratory and systemic anti-inflammatory medications; it is possible that these associations may be a consequence of live-birth bias. These findings suggest wildfire smoke exposure during early postnatal developmental periods impact subsequent early life respiratory health.


Assuntos
Poluentes Atmosféricos , Doenças Respiratórias , Incêndios Florestais , Humanos , Lactente , Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos , Material Particulado , Estudos Retrospectivos , Fumaça/efeitos adversos , Masculino , Feminino
5.
Am J Respir Crit Care Med ; 206(10): 1248-1258, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35731626

RESUMO

Rationale: Numerous studies have demonstrated that e-cigarettes can impact respiratory immune homeostasis; however, the extent of these effects remains an active area of investigation, and most previous studies were conducted with model systems or subjects exposed to third-generation e-cigarettes, such as vape pens and box mods. Objectives: Given the rise in popularity of nicotine-salt-containing pods and disposable e-cigarettes (fourth generation), we set out to better understand the respiratory effects of these newer e-cigarettes and compare their effects to early-generation devices. Methods: We collected induced sputum samples from a cohort of nonsmokers, smokers, third-generation e-cigarette users, and fourth-generation e-cigarette users (n = 20-30 per group) and evaluated the cellular and fluid-phase composition for markers of inflammation, host defense, and lung injury. Measurements and Main Results: Fourth-generation e-cigarette users had significantly more bronchial epithelial cells in the sputum, suggestive of airway injury. Concentrations of soluble intercellular adhesion molecule 1 (sICAM1) and soluble vascular cell adhesion molecule 1 (sVCAM1) were significantly lower in fourth-generation e-cigarette users in comparison with all other groups, and CRP (C-reactive protein), IFN-γ, MCP-1 (monocyte chemoattractant protein-1), MMP-2 (matrix metalloproteinase 2), uteroglobin, and VEGF (vascular endothelial growth factor) were significantly lower in fourth- versus third-generation e-cigarette users, suggestive of overall immune suppression in fourth-generation e-cigarette users. Predictive modeling also demonstrated clear separation between exposure groups, indicating that the overall mediator milieu is different between groups, particularly fourth-generation e-cigarette users. Conclusions: Our results indicate disrupted immune homeostasis in fourth-generation e-cigarette users and demonstrate that the biological effects of fourth-generation e-cigarette use are unique compared with those associated with previous-generation e-cigarettes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Humanos , Vaping/efeitos adversos , Metaloproteinase 2 da Matriz , Fator A de Crescimento do Endotélio Vascular , Biomarcadores , Homeostase
6.
Am J Physiol Lung Cell Mol Physiol ; 322(5): L722-L736, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318855

RESUMO

Inhalation exposure to cigarette smoke and e-cigarette aerosol is known to alter the respiratory immune system, particularly cytokine signaling. In assessments of health impacts of tobacco product use, cytokines are often measured using a variety of sample types, from serum to airway mucosa. However, it is currently unclear whether and how well cytokine levels from different sample types and the airway locations they represent are correlated, making comparing studies that utilize differing sample types challenging. To address this challenge, we compared baseline cytokine signatures in upper and lower airways and systemic samples and evaluated how groups of coexpressed cytokines change with tobacco product use. Matched nasal lavage fluid (NLF), nasal epithelial lining fluid (NELF), sputum, and circulating serum samples were collected from 14 nonsmokers, 13 cigarette smokers, and 17 e-cigarette users and analyzed for levels of 22 cytokines. Individual cytokine signatures were first compared across each sample type, followed by identification of cytokine clusters within each sample type. Identified clusters were then evaluated for potential alterations following tobacco product use using eigenvector analyses. Individual cytokine signatures in the respiratory tract were significantly correlated (NLF, NELF, and sputum) compared with randomly permutated signatures, whereas serum was not significantly different from random permutations. Cytokine clusters that were similar across airway sample types were modified by tobacco product use, particularly e-cigarettes, indicating a degree of uniformity in terms of how cytokine host defense and immune cell recruitment responses cooperate in the upper and lower airways. Overall, cluster-based analyses were found to be especially useful in small cohort assessments, providing higher sensitivity than individual signatures to detect biologically meaningful differences between tobacco use groups. This novel cluster analysis approach revealed that eigencytokine patterns in noninvasive upper airway samples simulate cytokine patterns in lower airways.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Tabagismo , Citocinas , Humanos , Sistema Respiratório , Produtos do Tabaco/efeitos adversos , Uso de Tabaco
7.
Thorax ; 77(7): 663-668, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35013000

RESUMO

RATIONALE: Despite high prevalence of e-cigarette use (vaping), little is currently known regarding the health effects of secondhand nicotine vape exposure. OBJECTIVE: To investigate whether exposure to secondhand nicotine vape exposure is associated with adverse respiratory health symptoms among young adults. METHOD: We investigated the effect of secondhand nicotine vape exposure on annually reported wheeze, bronchitic symptoms and shortness of breath in the prospective Southern California Children Health Study cohort. Data were collected from study participants (n=2097) with repeated annual surveys from 2014 (average age: 17.3 years) to 2019 (average age: 21.9). We used mixed effect logistic regression to evaluate the association between secondhand nicotine vape and respiratory symptoms after controlling for relevant confounders. RESULTS: Prevalence of secondhand nicotine vape increased from 11.7% to 15.6% during the study period in this population. Prevalence of wheeze, bronchitic symptoms and shortness of breath ranged from 12.3% to 14.9%, 19.4% to 26.0% and 16.5% to 18.1%, respectively, during the study period. Associations of secondhand nicotine vape exposure with bronchitic symptoms (OR 1.40, 95% CI 1.06 to 1.84) and shortness of breath (OR 1.53, 95% CI 1.06 to 2.21) were observed after controlling for vaping, active and passive exposure to tobacco or cannabis, and demographic characteristics (age, gender, race/ethnicity and parental education). Stronger associations were observed when analysis was restricted to participants who were neither smokers nor vapers. There were no associations with wheezing after adjustment for confounders. CONCLUSION: Secondhand nicotine vape exposure was associated with increased risk of bronchitic symptoms and shortness of breath among young adults.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Adolescente , Dispneia/epidemiologia , Dispneia/etiologia , Humanos , Nicotina , Estudos Prospectivos , Sons Respiratórios/etiologia , Vaping/efeitos adversos , Vaping/epidemiologia , Adulto Jovem
8.
J Allergy Clin Immunol ; 148(6): 1420-1429, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252446

RESUMO

Air pollutants are a major source of increased risk of disease, hospitalization, morbidity, and mortality worldwide. The respiratory tract is a primary target of potential concurrent exposure to both inhaled pollutants and pathogens, including viruses. Although there are various associative studies linking adverse outcomes to co- or subsequent exposures to inhaled pollutants and viruses, knowledge about causal linkages and mechanisms by which pollutant exposure may alter human respiratory responses to viral infection is more limited. In this article, we review what is known about the impact of pollutant exposure on antiviral host defense responses and describe potential mechanisms by which pollutants can alter the viral infection cycle. This review focuses on evidence from human observational and controlled exposure, ex vivo, and in vitro studies. Overall, there are a myriad of points throughout the viral infection cycle that inhaled pollutants can alter to modulate appropriate host defense responses. These alterations may contribute to observed increases in rates of viral infection and associated morbidity and mortality in areas of the world with high ambient pollution levels or in people using tobacco products. Although the understanding of mechanisms of interaction is advancing through controlled in vivo and in vitro exposure models, more studies are needed because emerging infectious pathogens, such as severe acute respiratory syndrome coronavirus 2, present a significant threat to public health.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , COVID-19 , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Material Particulado/efeitos adversos , Poluentes Ambientais , Hospitalização , Humanos , Pandemias , Sistema Respiratório , Viroses
9.
Am J Respir Cell Mol Biol ; 64(1): 126-137, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095645

RESUMO

Inhalation of tobacco smoke has been linked to increased risk of viral infection, such as influenza. Inhalation of electronic-cigarette (e-cigarette) aerosol has also recently been linked to immune suppression within the respiratory tract, specifically the nasal mucosa. We propose that changes in the nasal mucosal immune response modify antiviral host-defense responses in e-cigarette users. Nonsmokers, cigarette smokers, and e-cigarette users were inoculated with live-attenuated influenza virus (LAIV) to safely examine the innate immune response to influenza infection. Before and after LAIV inoculation, we collected nasal epithelial-lining fluid, nasal lavage fluid, nasal-scrape biopsy specimens, urine, and blood. Endpoints examined include cytokines and chemokines, influenza-specific IgA, immune-gene expression, and markers of viral load. Statistical analysis included primary comparisons of cigarette and e-cigarette groups with nonsmokers, as well as secondary analysis of demographic factors as potential modifiers. Markers of viral load did not differ among the three groups. Nasal-lavage-fluid anti-LAIV IgA levels increased in nonsmokers after LAIV inoculation but did not increase in e-cigarette users and cigarette smokers. LAIV-induced gene-expression changes in nasal biopsy specimens differed in cigarette smokers and e-cigarette users as compared with nonsmokers, with a greater number of genes changed in e-cigarette users, mostly resulting in decreased expression. The top downregulated genes in cigarette smokers were SMPD3, NOS2A, and KLRB1, and the top downregulated genes in e-cigarette users were MR1, NT5E, and HRAS. Similarly, LAIV-induced cytokine levels in nasal epithelial-lining fluid differed among the three groups, including decreased antiviral host-defense mediators (IFNγ, IL6, and IL12p40). We also detected that sex interacted with tobacco-product exposure to modify LAIV-induced immune-gene expression. Our results demonstrate that e-cigarette use altered nasal LAIV-induced immune responses, including gene expression, cytokine and chemokine release, and LAIV-specific IgA levels. Together, these data suggest that e-cigarette use induces changes in the nasal mucosa that are consistent with the potential for altered respiratory antiviral host-defense function.Clinical trial registered with www.clinicaltrials.gov (NCT02019745).


Assuntos
Imunidade nas Mucosas/efeitos dos fármacos , Vacinas contra Influenza/imunologia , Mucosa Nasal/efeitos dos fármacos , Produtos do Tabaco/efeitos adversos , Vacinas Atenuadas/imunologia , Vaping/efeitos adversos , Vaping/imunologia , Adulto , Citocinas/imunologia , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Imunidade nas Mucosas/imunologia , Inflamação/imunologia , Inflamação/virologia , Influenza Humana/imunologia , Influenza Humana/virologia , Masculino , Líquido da Lavagem Nasal/imunologia , Líquido da Lavagem Nasal/virologia , Mucosa Nasal/imunologia , Fumaça/efeitos adversos , Adulto Jovem
10.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L1064-L1073, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33825493

RESUMO

In the United States, millions of adults use electronic cigarettes (e-cigs), and a majority of these users are former or current cigarette smokers. It is unclear, whether prior smoking status affects biological responses induced by e-cigs. In this study, differentiated human nasal epithelial cells (hNECs) from nonsmokers and smokers at air-liquid interface were acutely exposed to the e-cig generated aerosols of humectants, propylene glycol (PG), and glycerol (GLY). Mucin levels were examined in the apical washes, and cytokine levels were assessed in the basolateral supernatants 24 h postexposure. The aerosol from the GLY exposure increased mucin 5, subtype AC (MUC5AC) levels in the apical wash of hNECs from nonsmokers, but not smokers. However, the aerosol from GLY induced pro-inflammatory responses in hNECs from smokers. We also exposed hNECs from nonsmokers and smokers to e-cig generated aerosol from PG:GLY with freebase nicotine or nicotine salt. The PG:GLY with freebase nicotine exposure increased MUC5AC and mucin 5, subtype B (MUC5B) levels in hNECs from nonsmokers, but the nicotine salt exposure did not. The PG:GLY with nicotine salt exposure increased pro-inflammatory cytokines in hNECs from smokers, which was not seen with the freebase nicotine exposure. Taken together, these data indicate that the e-cig generated aerosols from the humectants, mostly GLY, and the type of nicotine used cause differential effects in airway epithelial cells from nonsmokers and smokers. As e-cig use is increasing, it is important to understand that the biological effects of e-cig use are likely dependent on prior cigarette smoke exposure.


Assuntos
Células Epiteliais/efeitos dos fármacos , Nicotina/farmacologia , não Fumantes , Fumantes , Vaping/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , Glicerol/farmacologia , Humanos , Higroscópicos/farmacologia , Pulmão/efeitos dos fármacos , Propilenoglicol/farmacologia
11.
Nicotine Tob Res ; 23(3): 614-618, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-31993664

RESUMO

INTRODUCTION: E-cigarette studies have found that the use of a variety of flavors and customizable devices results in greater use frequency and user satisfaction. However, standardized research e-cigarettes are being developed as closed systems with limited flavor options, potentially limiting user satisfaction. In this study, we explore protocol compliance in an e-cigarette study using a standardized, assigned device with puff time and duration tracking (controlled e-cigarette) and potential limitations that controlled devices and e-liquids can introduce. METHODS: In a crossover study, 49 young adult e-cigarette users were recruited using convenience sampling and assigned a controlled e-cigarette device and flavored or unflavored e-liquids on standardized protocols. E-cigarette use frequency (number of puffs per day, collected from the device) and serum cotinine levels were obtained at each of three study visits over 3 weeks. The correlation of cotinine and e-cigarette use over the preceding week was calculated at each study visit. RESULTS: Correlation of nicotine intake, as measured by serum cotinine, and puff time, as measured by puffs count and duration from the e-cigarette device, as an indicator of study protocol compliance, substantially declined after the first week of the study and were no longer correlated in the remaining study weeks (R2 = 0.53 and p ≤ .01 in week 1, R2 < 0.5 and p > .05 for remaining weeks). CONCLUSIONS: There is an emerging need for controlled e-cigarette exposures studies, but low compliance in the use of assigned devices and e-liquids may be a limitation that needs to be mitigated in future studies. IMPLICATIONS: This study is the first to analyze compliance with instructions to use a standardized e-cigarette device with puff time and duration tracking (controlled e-cigarette) across all subjects and an assigned e-liquid flavor over a 3-week period. We find that protocol compliance, as measured by correlations between e-cigarette use measures and cotinine levels, was only achieved in the first week of the study and declined thereafter. These findings indicate that the assignment of a study device and instruction to only use the study device with assigned e-liquid flavor may not be sufficient to ensure participant compliance with the study protocol. We suggest that additional measures, including behavioral and biological markers, are needed to ensure sole use of the study e-cigarette and e-liquid and to be able to interpret results from controlled e-cigarette studies.


Assuntos
Biomarcadores/análise , Sistemas Eletrônicos de Liberação de Nicotina/normas , Aromatizantes/administração & dosagem , Aromatizantes/análise , Vaping/epidemiologia , Adolescente , Adulto , Criança , Estudos Cross-Over , Sistemas Eletrônicos de Liberação de Nicotina/estatística & dados numéricos , Feminino , Humanos , Masculino , Projetos de Pesquisa , Vaping/psicologia , Adulto Jovem
12.
J Asthma ; 57(11): 1168-1172, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31352844

RESUMO

Introduction: Electronic nicotine delivery systems (ENDS) use is on the rise in the adolescent and young adult populations, especially in the wake of sweet flavored ENDS solutions and youth-targeted marketing. While the extent of effect of ENDS use and aerosolized flavorings on airway epithelium is not known, there remains significant concern that use of ENDS adversely affects airway epithelial function, particularly in populations with asthma.Case Study: In this case series, we review two cases of adolescents with history of recent and past ENDS use and asthma who required veno-venous extracorporeal membrane oxygenation (VV-ECMO) for status asthmaticus in the year 2018.Results: Both patients experienced hypercarbic respiratory failure requiring VV-ECMO secondary to their status asthmaticus, with slow recovery on extensive bronchodilator and steroid regimens. They both recovered back to respiratory baseline and were counseled extensively on cessation of ENDS use.Conclusion: While direct causation by exposure to ENDS cannot be determined, exposure likely contributed to symptoms. Based on the severity of these cases and their potential relationship with ENDS use, we advocate for increased physician screening of adolescents for ENDS use, patient and parent education on the risks of use, and family cessation counseling.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Oxigenação por Membrana Extracorpórea , Insuficiência Respiratória/etiologia , Estado Asmático/etiologia , Vaping/efeitos adversos , Adolescente , Feminino , Humanos , Masculino , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/terapia , Índice de Gravidade de Doença , Estado Asmático/diagnóstico , Estado Asmático/terapia , Resultado do Tratamento
13.
Am J Respir Crit Care Med ; 199(8): 996-1007, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30360637

RESUMO

RATIONALE: Exposure to particulates from burning biomass is an increasing global health issue. Burning biomass, including wood smoke, is associated with increased lower respiratory infections. OBJECTIVES: To determine whether acute exposure to wood smoke modifies nasal inflammatory responses to influenza. METHODS: Healthy young adults (n = 39) were randomized to a 2-hour controlled chamber exposure to wood smoke, where exposure levels were controlled to particulate number (wood smoke particles [WSP]; 500 µg/cm3) or filtered air, followed by nasal inoculation with a vaccine dose of live attenuated influenza virus (LAIV). Nasal lavage was performed before exposure (Day 0) and on Days 1 and 2 after exposure. Nasal lavage fluid cells were analyzed for inflammatory gene expression profiles, and cell-free fluid was assayed for cytokines. MEASUREMENTS AND MAIN RESULTS: Only IP-10 protein levels were affected, suppressed, by WSP exposure in aggregate analysis. Subsequent analysis indicated an exposure × sex interaction, prompting additional analyses of WSP- and LAIV-induced changes in males and females. Inflammation-related gene expression profiles differed between the sexes, at baseline (males greater than females), after LAIV inoculation (females greater than males), and after WSP exposure (increase in males and decrease in females), demonstrating that WSP- and LAIV-induced changes in antiviral defense responses in the nasal mucosa occur in a sex-specific manner. CONCLUSIONS: WSP exposure resulted in minimal modification of LAIV-induced responses in aggregate analysis. In contrast, analyzing WSP-induced modification of LAIV responses in the sexes separately unmasked sex-specific differences in response to exposure. These data highlight the need for additional studies to understand sex-specific pollutant-induced effects. Clinical trial registered with www.clinicaltrials.gov (NCT02183753).


Assuntos
Inflamação/etiologia , Vacinas contra Influenza/farmacologia , Influenza Humana/imunologia , Exposição por Inalação/efeitos adversos , Fumaça/efeitos adversos , Madeira , Citocinas/análise , Feminino , Humanos , Inflamação/virologia , Vacinas contra Influenza/imunologia , Masculino , Pessoa de Meia-Idade , Líquido da Lavagem Nasal/química , Líquido da Lavagem Nasal/citologia , Fatores Sexuais , Transcriptoma/efeitos dos fármacos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/farmacologia
14.
Chem Res Toxicol ; 32(10): 1997-2005, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31476115

RESUMO

Inhaled ground level ozone (O3) has well described adverse health effects, which may be augmented in susceptible populations. While conditions, such as pre-existing respiratory disease, have been identified as factors enhancing susceptibility to O3-induced health effects, the potential for chemical interactions in the lung to sensitize populations to pollutant-induced responses has not yet been studied. In the airways, inhaled O3 reacts with lipids, such as cholesterol, to generate reactive and electrophilic oxysterol species, capable of causing cellular dysfunction and inflammation. The enzyme regulating the final step of cholesterol biosynthesis, 7-dehydrocholesterol reductase (DHCR7), converts 7-dehydrocholesterol (7-DHC) to cholesterol. Inhibition of DHCR7 increases the levels of 7-DHC, which is much more susceptible to oxidation than cholesterol. Chemical analysis established the capacity for a variety of small molecule antipsychotic drugs, like Aripiprazole (APZ), to inhibit DHCR7 and elevate circulating 7-DHC. Our results show that APZ and the known DHCR7 inhibitor, AY9944, increase 7-DHC levels in airway epithelial cells and potentiate O3-induced IL-6 and IL-8 expression and cytokine release. Targeted immune-related gene array analysis demonstrates that APZ significantly modified O3-induced expression of 16 genes, causing dysregulation in expression of genes associated with leukocyte recruitment and inflammatory response. Additionally, we find that APZ increases O3-induced IL-6 and IL-8 expression in human nasal epithelial cells from male but not female donors. Overall, the evidence we provide describes a novel molecular mechanism by which chemicals, such as APZ, that perturb cholesterol biosynthesis affect O3-induced biological responses.


Assuntos
Antipsicóticos/toxicidade , Aripiprazol/toxicidade , Células Epiteliais/efeitos dos fármacos , Inflamação/induzido quimicamente , Ozônio/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/toxicidade , Antipsicóticos/química , Aripiprazol/química , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Estrutura Molecular , Mucosa Respiratória/metabolismo , Bibliotecas de Moléculas Pequenas/química , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano/química , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano/toxicidade
15.
Am J Respir Crit Care Med ; 197(4): 492-501, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29053025

RESUMO

RATIONALE: E-cigarettes have become increasingly popular and little is known about their potential adverse health effects. OBJECTIVES: To determine the effects of e-cigarette use on the airways. METHODS: Induced sputum samples from cigarette smokers, e-cigarette users, and nonsmokers were analyzed by quantitative proteomics, and the total and individual concentrations of mucins MUC5AC and MUC5B were determined by light scattering/refractometry and labeled mass spectrometry, respectively. Neutrophil extracellular trap (NET) formation rates were also determined for the same groups. MEASUREMENTS AND MAIN RESULTS: E-cigarette users exhibited significant increases in aldehyde-detoxification and oxidative stress-related proteins associated with cigarette smoke compared with nonsmokers. The levels of innate defense proteins associated with chronic obstructive pulmonary disease, such as elastase and matrix metalloproteinase-9, were significantly elevated in e-cigarette users as well. E-cigarette users' sputum also uniquely exhibited significant increases in neutrophil granulocyte-related and NET-related proteins, such as myeloperoxidase, azurocidin, and protein-arginine deiminase 4, despite no significant elevation in neutrophil cell counts. Peripheral neutrophils from e-cigarette users showed increased susceptibility to phorbol 12-myristate 13-acetate-induced NETosis. Finally, a compositional change in the gel-forming building blocks of airway mucus (i.e., an elevated concentration of mucin MUC5AC) was observed in both cigarette smokers and e-cigarette users. CONCLUSIONS: Together, our results indicate that e-cigarette use alters the profile of innate defense proteins in airway secretions, inducing similar and unique changes relative to cigarette smoking. These data challenge the concept that e-cigarettes are a healthier alternative to cigarettes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Imunidade Inata/imunologia , Pulmão/imunologia , Mucinas/imunologia , Ativação de Neutrófilo/imunologia , Fumar/imunologia , Adulto , Cromatografia Líquida de Alta Pressão , Estudos Transversais , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Mucinas/biossíntese , Mucosa Respiratória/imunologia , Escarro/imunologia , Adulto Jovem
17.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L288-L296, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011618

RESUMO

Reliable methods for sampling the nasal mucosa provide clinical researchers with key information regarding respiratory biomarkers of exposure and disease. For quick and noninvasive sampling of the nasal mucosa, nasal lavage (NL) collection has been widely used as a clinical tool; however, limitations including volume variability, sample dilution, and storage prevent NL collection from being used in nonlaboratory settings and analysis of low abundance biomarkers. In this study, we optimize and validate a novel methodology using absorbent Leukosorb paper cut to fit the nasal passage to extract epithelial lining fluid (ELF) from the nasal mucosa. The ELF sampling method limits the dilution of soluble mediators, allowing quantification of both high- and low-abundance soluble biomarkers such as IL-1ß, IL-8, IL-6, interferon gamma-induced protein 10 (IP-10), and neutrophil elastase. Additionally, we demonstrate that this method can successfully detect the presence of respiratory pathogens such as influenza virus and markers of antibiotic-resistant bacteria in the nasal mucosa. Efficacy of ELF collection by this method is not diminished in consecutive-day sampling, and percent recovery of both recombinant IL-8 and soluble mediators are not changed despite freezing or room temperature storage for 24 h. Our results indicate that ELF collection using Leukosorb paper sampling of ELF provides a sensitive, easy-to-use, and reproducible methodology to collect concentrated amounts of soluble biomarkers from the nasal mucosa. Moreover, the methodology described herein improves upon the standard NL collection method and provides researchers with a novel tool to assess changes in nasal mucosal host defense status.


Assuntos
Mucosa Nasal/fisiologia , Manejo de Espécimes/métodos , Adulto , Epitélio/metabolismo , Feminino , Humanos , Interleucina-8/metabolismo , Masculino , Líquido da Lavagem Nasal , Proteínas Recombinantes/metabolismo , Adulto Jovem
20.
Am J Physiol Lung Cell Mol Physiol ; 311(1): L135-44, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27288488

RESUMO

Exposure to cigarette smoke is known to result in impaired host defense responses and immune suppressive effects. However, the effects of new and emerging tobacco products, such as e-cigarettes, on the immune status of the respiratory epithelium are largely unknown. We conducted a clinical study collecting superficial nasal scrape biopsies, nasal lavage, urine, and serum from nonsmokers, cigarette smokers, and e-cigarette users and assessed them for changes in immune gene expression profiles. Smoking status was determined based on a smoking history and a 3- to 4-wk smoking diary and confirmed using serum cotinine and urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels. Total RNA from nasal scrape biopsies was analyzed using the nCounter Human Immunology v2 Expression panel. Smoking cigarettes or vaping e-cigarettes resulted in decreased expression of immune-related genes. All genes with decreased expression in cigarette smokers (n = 53) were also decreased in e-cigarette smokers. Additionally, vaping e-cigarettes was associated with suppression of a large number of unique genes (n = 305). Furthermore, the e-cigarette users showed a greater suppression of genes common with those changed in cigarette smokers. This was particularly apparent for suppressed expression of transcription factors, such as EGR1, which was functionally associated with decreased expression of 5 target genes in cigarette smokers and 18 target genes in e-cigarette users. Taken together, these data indicate that vaping e-cigarettes is associated with decreased expression of a large number of immune-related genes, which are consistent with immune suppression at the level of the nasal mucosa.


Assuntos
Mucosa Nasal/metabolismo , Fumar/metabolismo , Vaping/metabolismo , Adulto , Estudos Transversais , Citocinas/biossíntese , Citocinas/genética , Sistemas Eletrônicos de Liberação de Nicotina , Feminino , Redes Reguladoras de Genes , Humanos , Hospedeiro Imunocomprometido , Masculino , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/imunologia , Nitrosaminas/urina , Estudos Prospectivos , Piridinas/urina , Transdução de Sinais , Fumar/efeitos adversos , Fatores de Transcrição/fisiologia , Transcriptoma , Vaping/efeitos adversos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA