RESUMO
The piperazine heterocycle is broadly exploited in FDA-approved drugs and biologically active compounds, but its chemical diversity is usually limited to ring nitrogen substitutions, leaving the four carbon atoms underutilized. Using an efficient four-step synthesis, chiral amino acids were transformed into 6-substituted piperazine-2-acetic acid esters as diastereomeric mixtures whose cis and trans products could be chromatographically separated. From six amino acids (both antipodes), a complete matrix of 24 monoprotected chiral 2,6-disubstituted piperazines was obtained, each as a single absolute stereoisomer in multigram quantities. These diverse and versatile piperazines can be functionalized on either nitrogen atom, allowing them to be used as scaffolds for parallel library synthesis or intermediates for the production of novel piperazine compounds.
RESUMO
The piperazine heterocycle is broadly exploited in FDA-approved drugs and biologically active compounds, but its chemical diversity is usually limited to ring nitrogen substitutions, leaving the four carbon atoms underutilized. Using an efficient six-step synthesis, chiral amino acids were transformed into 3-substituted piperazine-2-acetic acid esters as diastereomeric mixtures whose cis and trans products (dr 0.56 â 2.2:1, respectively) could be chromatographically separated. From five amino acids (both antipodes) was obtained a complete matrix of 20 monoprotected chiral 2,3-disubstituted piperazines, each as a single absolute stereoisomer, all but one in multigram quantities. In keeping with our overall purpose of constructing more Csp3-enriched compound libraries for drug discovery, these diverse and versatile piperazines can be functionalized on either nitrogen atom, allowing them to be used as scaffolds for parallel library synthesis and as intermediates for the production of novel piperazine compounds.
RESUMO
A novel series of medium size (S)-3-alkyl-3,4,6,7-tetrahydro-1H-benzo[e][1,4]diazonine-2,5-dione (6a-f) analogues were synthesized from (E)-3-(2-nitrophenyl)acrylicacid (2) reacting with various amino acid esters using Di-isopropyl Carbodiimide as a coupling agent. The final cyclization is carried out by using reagent 1-Ethyl-3(3-dimethylaminopropyl) Carbodiimide Hydrochloride. The synthesized compounds have been supported by Mass, 1H-NMR and 13C-NMR. Further antibacterial studies were conducted, where some molecules are noticed with potent activity, especially molecule 6d shown highest activity which was also supported by molecular docking studies. All final molecules were docked with enzyme peptide deformylase to determine the probable binding conformation.
RESUMO
A novel approach to incorporate the macrocyclic rings onto the privileged substructure, i.e., tetrahydroquinoline scaffold, is developed. The presence of an amino acid-derived moiety in the macrocyclic skeleton provides an opportunity to modulate the nature of the chiral side chain. Further, evaluation in a zebrafish screen identified three active small molecules (2.5b, 3.2d, and 4.2) as antiangiogenesis agents at 2.5 µM.