Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 140: 106784, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37639758

RESUMO

5-Fluorouracil (5-FU) is one of the most widely applied chemotherapeutic agents with a broad spectrum of activity. However, despite this versatile activity, its use poses many limitations. Herein, novel derivatives of 5-FU and dichloroacetic acid have been designed and synthesized as a new type of codrugs, also known as mutual prodrugs, to overcome the drawbacks of 5-FU and enhance its therapeutic efficiency. The stability of the obtained compounds has been tested at various pH values using different analytical techniques, namely HPLC and potentiometry. The antiproliferative activity of the new 5-FU derivatives was assessed in vitro on SK-MEL-28 and WM793 human melanoma cell lines in 2D culture as well as on A549 human lung carcinoma, MDA-MB-231 breast adenocarcinoma, LL24 normal lung tissue, and HMF normal breast tissue as a multicellular 3D spheroid model cultured in standard (static) conditions and with the use of microfluidic systems, which to a great extent resembles the in vivo environment. In all cases, new mutual prodrugs showed a higher cytotoxic activity toward cancer models and lower to normal cell models than the parent 5-FU itself.


Assuntos
Antineoplásicos , Hidrocarbonetos Clorados , Pró-Fármacos , Humanos , Fluoruracila/farmacologia , Pró-Fármacos/farmacologia , Antineoplásicos/farmacologia , Acetatos , Linhagem Celular
2.
Semin Cell Dev Biol ; 104: 81-92, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32063453

RESUMO

Myoblast fusion into myotubes is one of the crucial steps of skeletal muscle development (myogenesis). The fusion is preceded by specification of a myogenic lineage (mesodermal progenitors) differentiating into myoblasts and is followed by myofiber-type specification and neuromuscular junction formation. Similarly to other processes of myogenesis, the fusion requires a very precise spatial and temporal regulation occuring both during embryonic development as well as regeneration and repair of the muscle. A plethora of genes and their products is involved in regulation of myoblast fusion and a precise multilevel interplay between them is crucial for myogenic cells to fuse. In this review, we describe both cellular events taking place during myoblast fusion (migration, adhesion, elongation, cell-cell recognition, alignment, and fusion of myoblast membranes enabling formation of myotubes) as well as recent findings on mechanisms regulating this process. Also, we present muscle disorders in humans that have been associated with defects in genes involved in regulation of myoblast fusion.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Animais , Diferenciação Celular , Humanos , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia
3.
J Muscle Res Cell Motil ; 43(2): 45-47, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35723852

RESUMO

A report on the first virtual European Muscle Conference.


Assuntos
Músculo Esquelético , Pandemias
4.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34769479

RESUMO

Currently, the etiology of many neuromuscular disorders remains unknown. Many of them are characterized by aberrations in the maturation of the neuromuscular junction (NMJ) postsynaptic machinery. Unfortunately, the molecular factors involved in this process are still largely unknown, which poses a great challenge for identifying potential therapeutic targets. Here, we identified Tks5 as a novel interactor of αdystrobrevin-1, which is a crucial component of the NMJ postsynaptic machinery. Tks5 has been previously shown in cancer cells to be an important regulator of actin-rich structures known as invadosomes. However, a role of this scaffold protein at a synapse has never been studied. We show that Tks5 is crucial for remodeling of the NMJ postsynaptic machinery by regulating the organization of structures similar to the invadosomes, known as synaptic podosomes. Additionally, it is involved in the maintenance of the integrity of acetylcholine receptor (AChR) clusters and regulation of their turnover. Lastly, our data indicate that these Tks5 functions may be mediated by its involvement in recruitment of actin filaments to the postsynaptic machinery. Collectively, we show for the first time that the Tks5 protein is involved in regulation of the postsynaptic machinery.


Assuntos
Junção Neuromuscular/metabolismo , Proteínas de Ligação a Fosfato/fisiologia , Podossomos/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Junção Neuromuscular/efeitos dos fármacos , Proteínas de Ligação a Fosfato/antagonistas & inibidores , Podossomos/efeitos dos fármacos , Densidade Pós-Sináptica/efeitos dos fármacos , Densidade Pós-Sináptica/metabolismo , RNA Interferente Pequeno/farmacologia , Sinapses/efeitos dos fármacos
5.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200807

RESUMO

Protein kinase CK2 has been considered as an attractive drug target for anti-cancer therapy. The synthesis of N-hydroxypropyl TBBi and 2MeTBBi derivatives as well as their respective esters was carried out by using chemoenzymatic methods. Concomitantly with kinetic studies toward recombinant CK2, the influence of the obtained compounds on the viability of two human breast carcinoma cell lines (MCF-7 and MDA-MB-231) was evaluated using MTT assay. Additionally, an intracellular inhibition of CK2 as well as an induction of apoptosis in the examined cells after the treatment with the most active compounds were studied by Western blot analysis, phase-contrast microscopy and flow cytometry method. The results of the MTT test revealed potent cytotoxic activities for most of the newly synthesized compounds (EC50 4.90 to 32.77 µM), corresponding to their solubility in biological media. We concluded that derivatives with the methyl group decrease the viability of both cell lines more efficiently than their non-methylated analogs. Furthermore, inhibition of CK2 in breast cancer cells treated with the tested compounds at the concentrations equal to their EC50 values correlates well with their lipophilicity since derivatives with higher values of logP are more potent intracellular inhibitors of CK2 with better proapoptotic properties than their parental hydroxyl compounds.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Benzimidazóis/química , Neoplasias da Mama/tratamento farmacológico , Caseína Quinase II/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Relação Estrutura-Atividade
6.
Molecules ; 26(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062758

RESUMO

Crataegus contains numerous health-promoting compounds that are also proposed to have anti-cancer properties. Herein, we aimed at a contemporaneous evaluation of the effects of polyphenol-rich extracts of berries, leaves, and flowers of six Crataegus species on the viability and invasive potential on the highly aggressive human glioblastoma U87MG cell line. The treatment with the extracts evoked cytotoxic effects, with the strongest in the berry extracts. All extracts not only promoted the apoptosis-related cleavage of poly (ADP-ribose) polymerase 1 (PARP1) but also substantially inhibited the activity of pro-survival kinases, focal adhesion kinase (FAK), and protein kinase B (PKB; also known as Akt), thus indicating the suppression of proliferative and invasive potentials of the examined glioblastoma cells. The qualitative and quantitative characterization of the extracts' content was also performed and revealed that amongst 37 polyphenolic compounds identified in the examined Crataegus extracts, the majority (29) was detected in berries; the leaf and flower extracts, exerting milder cytotoxic effects, contained only 14 and 13 compounds, respectively. The highest polyphenol content was found in the berries of C. laevigata x rhipidophylla x monogyna, in which flavan-3-ols and phenolic acids predominated. Our results demonstrated that a high content of polyphenolic compounds correlated with the extract cytotoxicity, and especially berries were a valuable source of compounds with anti-cancer potential. This might be a promising option for the development of an effective therapeutic strategy against highly malignant glioblastomas in the future.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Crataegus/metabolismo , Flores/metabolismo , Glioblastoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Polifenóis/química , Citoesqueleto de Actina/metabolismo , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Hidroxibenzoatos/química , Microscopia Confocal , Invasividade Neoplásica , Neoplasias/metabolismo
7.
Biol Reprod ; 103(3): 521-533, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32412041

RESUMO

During spermiogenesis in mammals, actin filaments and a variety of actin-binding proteins are involved in the formation and function of highly specialized testis-specific structures. Actin-based motor proteins, such as myosin Va and VIIa, play a key role in this complex process of spermatid transformation into mature sperm. We have previously demonstrated that myosin VI (MYO6) is also expressed in mouse testes. It is present in actin-rich structures important for spermatid development, including one of the earliest events in spermiogenesis-acrosome formation. Here, we demonstrate using immunofluorescence, cytochemical, and ultrastructural approaches that MYO6 is involved in maintaining the structural integrity of these specialized actin-rich structures during acrosome biogenesis in mouse. We show that MYO6 together with its binding partner TOM1/L2 is present at/around the spermatid Golgi complex and the nascent acrosome. Depletion of MYO6 in Snell's waltzer mice causes structural disruptions of the Golgi complex and affects the acrosomal granule positioning within the developing acrosome. In summary, our results suggest that MYO6 plays an anchoring role during the acrosome biogenesis mainly by tethering of different cargo/membranes to highly specialized actin-related structures.


Assuntos
Acrossomo/metabolismo , Acrossomo/ultraestrutura , Cadeias Pesadas de Miosina/biossíntese , Espermatogênese/fisiologia , Reação Acrossômica , Actinas/metabolismo , Animais , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Cadeias Pesadas de Miosina/genética , Contagem de Espermatozoides , Maturação do Esperma/genética , Espermátides
8.
Biol Reprod ; 102(4): 863-875, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31901088

RESUMO

Myosin VI (MYO6) is an actin-based motor that has been implicated in a wide range of cellular processes, including endocytosis and the regulation of actin dynamics. MYO6 is crucial for actin/membrane remodeling during the final step of Drosophila spermatogenesis, and MYO6-deficient males are sterile. This protein also localizes to actin-rich structures involved in mouse spermiogenesis. Although loss of MYO6 in Snell's waltzer knock-out (KO) mice causes several defects and shows reduced male fertility, no studies have been published to address the role of MYO6 in sperm development in mouse. Here we demonstrate that MYO6 and some of its binding partners are present at highly specialized actin-based structures, the apical tubulobulbar complexes (TBCs), which mediate endocytosis of the intercellular junctions at the Sertoli cell-spermatid interface, an essential process for sperm release. Using electron and light microscopy and biochemical approaches, we show that MYO6, GIPC1 and TOM1/L2 form a complex in testis and localize predominantly to an early endocytic APPL1-positive compartment of the TBCs that is distinct from EEA1-positive early endosomes. These proteins also associate with the TBC actin-free bulbular region. Finally, our studies using testis from Snell's waltzer males show that loss of MYO6 causes disruption of the actin cytoskeleton and disorganization of the TBCs and leads to defects in the distribution of the MYO6-positive early APPL1-endosomes. Taken together, we report here for the first time that lack of MYO6 in mouse testis reduces male fertility and disrupts spatial organization of the TBC-related endocytic compartment during the late phase of spermiogenesis.


Assuntos
Actinas/metabolismo , Endocitose/fisiologia , Infertilidade Masculina/genética , Cadeias Pesadas de Miosina/genética , Espermatogênese/genética , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Infertilidade Masculina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Knockout , Cadeias Pesadas de Miosina/metabolismo
9.
Bioorg Chem ; 100: 103864, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32446118

RESUMO

Three series of the ß-pyrimidine alanines, including willardiine - a naturally occurring amino acid, were prepared from the l-serine-derived sulfamidates. Compounds 3b, 4a and 4b demonstrated antiproliferative activity toward the studied cancer cell lines, albeit the effect of these compounds on human brain astrocytoma MOG-G-CCM cells was more significant than on human neuroblastoma SK-N-AS cells. The cytosine analog of willardiine, compound 4b, reduced viability of MOG-G-CCM cells with EC50 = 36 ± 2 µM, more effectively than AMPA antagonist GYKI 52466. Willardiine showed possible capability of affecting invasiveness of glioblastoma U251 MG cells with no effect on their viability and morphology. Compound 3d, the ethyl ester of willardiine, featured activity toward binding domain hHS1S2I of the GluR2 receptor. Docking analysis revealed that the location mode of compound 3d at the S1S2 domain of hGluR2 (PDB ID: 3R7X) might differ from that of willardiine.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , beta-Alanina/análogos & derivados , beta-Alanina/farmacologia , Alanina/análogos & derivados , Alanina/síntese química , Alanina/química , Alanina/farmacologia , Antineoplásicos/síntese química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Modelos Moleculares , Pirimidinas/síntese química , Uracila/síntese química , Uracila/química , Uracila/farmacologia , beta-Alanina/síntese química
10.
Adv Exp Med Biol ; 1202: 243-258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32034717

RESUMO

The observations that numerous cancers are characterized by impairment in arginine synthesis and that deficit of exogenous arginine specifically affects their growth and viability are the ground for arginine deprivation-based anticancer treatment strategy. This review addresses molecular mechanisms of the human glioblastoma cell response to arginine deprivation. Our earlier studies have shown that arginine deprivation specifically impairs glioblastoma cell motility, adhesion and invasiveness. These changes were evoked by alterations in the actin cytoskeleton organization resulting from a decreased arginylation of ß-actin isoform. Moreover, deficit of arginine induces prolonged endoplasmic reticulum (ER) stress and activation of the unfolded protein response, not leading, however, to a massive apoptosis in glioblastoma cells. Our current research indicates that cell death could be augmented by other compounds such as modulators of ER stress, for example arginine analogue of plant origin, canavanine. Implication of these studies on the development of new anti-glioma metabolic therapeutic modalities are discussed.


Assuntos
Arginina/deficiência , Arginina/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Transdução de Sinais , Animais , Arginina/análogos & derivados , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Humanos , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
11.
Int J Mol Sci ; 21(17)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872257

RESUMO

BACKGROUND: The combination effect of 5-fluorouracil (5-FU) with either CX-4945 or a new inhibitor of protein kinase CK2, namely 14B (4,5,6,7-tetrabromo-1-(3-bromopropyl)-2-methyl-1H-benzimidazole), on the viability of MCF-7 and triple-negative MDA-MB-231 breast cancer cell lines was studied. METHODS: Combination index (CI) values were determined using an MTT-based assay and the Chou-Talalay model. The effect of the tested drug combinations on pro-apoptotic properties and cell cycle progression was examined using flow cytometry. The activation of FAK, p38 MAPK, and ERK1/2 kinases and the expression of selected pro-apoptotic markers in MDA-MB-231 cell line after the combined treatment were evaluated by the western blot method. Confocal microscopy was used to examine actin network in MDA-MB-231. RESULTS: Our results showed that a synergistic effect (CI < 1) occurred in MDA-MB-231 after treatment with both combinations of 5-FU with 14B or CX-4945, whereas the combination of 5-FU and 14B evoked an antagonistic effect in MCF-7. We conclude that the synergistic interactions (CI < 1) observed for both the combinations of 5-FU and 14B or CX-4945 in MDA-MB-231 correlated with an activation of p38 MAPK, inhibition of FAK, increased expression of apoptogenic markers, prolongation of S-phase of cell cycle, and destabilization of actin network. CONCLUSIONS: The obtained results support the recent observation that CK2 inhibitors can improve 5-FU-based anticancer therapy and FAK kinase can be an attractive molecular target in breast cancer therapy.


Assuntos
Neoplasias da Mama/metabolismo , Fluoruracila/farmacologia , Quinase 1 de Adesão Focal/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Neoplasias da Mama/tratamento farmacológico , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Naftiridinas/farmacologia , Fenazinas/farmacologia
12.
Hum Genomics ; 12(1): 34, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970176

RESUMO

BACKGROUND: Limb girdle muscular dystrophies (LGMD) are a group of heterogeneous hereditary myopathies with similar clinical symptoms. Disease onset and progression are highly variable, with an elusive genetic background, and around 50% cases lacking molecular diagnosis. METHODS: Whole exome sequencing (WES) was performed in 73 patients with clinically diagnosed LGMD. A filtering strategy aimed at identification of variants related to the disease included integrative analysis of WES data and human phenotype ontology (HPO) terms, analysis of genes expressed in muscle, analysis of the disease-associated interactome and copy number variants analysis. RESULTS: Genetic diagnosis was possible in 68.5% of cases. On average, 36.3 rare variants in genes associated with various muscle diseases per patient were found that could relate to the clinical phenotype. The putative causative mutations were mostly in LGMD-associated genes, but also in genes not included in the current LGMD classification (DMD, COL6A2, and COL6A3). In three patients, mutations in two genes were suggested as the joint cause of the disease (CAPN3+MYH7, COL6A3+CACNA1S, DYSF+MYH7). Moreover, a variety of phenotype-influencing variants were postulated, including in patients with an identified already known primary pathogenic mutation. CONCLUSIONS: We hypothesize that LGMD could be better described as oligogenic disorders in which dominant clinical presentation can result from the combined effect of mutations in a set of genes. In this view, the inter- and intrafamilial variability could reflect a specific genetic background and the presence of sets of phenotype-influencing or co-causative mutations in genes that either interact with the known LGMD-associated genes or are a part of the same pathways or structures.


Assuntos
Calpaína/genética , Miosinas Cardíacas/genética , Disferlina/genética , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Cadeias Pesadas de Miosina/genética , Adolescente , Adulto , Idoso , Canais de Cálcio/genética , Canais de Cálcio Tipo L , Criança , Pré-Escolar , Colágeno Tipo VI/genética , Exoma/genética , Feminino , Predisposição Genética para Doença , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Muscular do Cíngulo dos Membros/patologia , Mutação/genética , Fenótipo , Polônia , Análise de Sequência de DNA , Sequenciamento do Exoma/métodos , Adulto Jovem
13.
Bioorg Chem ; 83: 500-510, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30453142

RESUMO

The 1H-1,2,3-triazole-originated derivatives of willardiine were obtained by: (i) construction of the 1H-1,2,3-triazole ring in 1,3-dipolar cycloaddition of the uracil-derived azides and the carboxylate-bearing alkynes or α-acylphosphorus ylide, or (ii) N-alkylation of the uracil derivative with the 1H-1,2,3-triazole-4-carboxylate-derived mesylate. The latter method offered: (i) reproducible results, (ii) a significant reduction of amounts of auxiliary materials, (iii) reduction in wastes and (iv) reduction in a number of manual operations required for obtaining the reaction product. Compound 6a exhibited significant binding affinity to hHS1S2I ligand-binding domain of GluR2 receptor (EC50 = 2.90 µM) and decreased viability of human astrocytoma MOG-G-CCM cells in higher extent than known AMPA antagonist GYKI 52466.


Assuntos
Antineoplásicos/farmacologia , Ácidos Carboxílicos/farmacologia , Triazóis/farmacologia , Uracila/análogos & derivados , Uracila/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Linhagem Celular Tumoral , Reação de Cicloadição , Humanos , Simulação de Acoplamento Molecular , Domínios Proteicos , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Triazóis/síntese química , Triazóis/química , Uracila/síntese química
14.
Exp Cell Res ; 355(2): 162-171, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28390676

RESUMO

Anticancer therapy based on recombinant arginine-degrading enzymes has been proposed for the treatment of several types of malignant cells deficient in arginine biosynthesis. One of the predicted side effects of such therapy is restricted bioavailability of nitric oxide as arginine catabolic product. Prolonged NO limitation may lead to unwanted disturbances in NO-dependent vasodilation, cardiovascular and immune systems. This problem can be overcome by co-supplementation with exogenous NO donor. However, NO may potentially counteract anticancer effects of therapy based on arginine deprivation. In this study, we evaluate for the first time the effects of an exogenous NO donor, sodium nitroprusside, on viability and metastatic properties of two human melanoma cell lines SK-MEL-28 and WM793 under arginine-deprived conditions. It was revealed that NO did not rescue melanoma cells from specific effects evoked by arginine deprivation, namely decreased viability and induction of apoptosis, dramatically reduced motility, invasiveness and clonogenic potential. Moreover, sodium nitroprusside co-treatment augmented several of these antineoplastic effects. We report that a combination of NO-donor and arginine deprivation strongly and specifically impaired metastatic behavior of melanoma cells. Thus, sodium nitroprusside can be considered as an adjuvant for the more efficient treatment of malignant melanoma and possibly other tumors with arginine-degrading enzymes.


Assuntos
Antineoplásicos/farmacologia , Arginina/deficiência , Arginina/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimioterapia Combinada , Humanos , Melanoma/patologia , Óxido Nítrico/biossíntese , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
Biochim Biophys Acta ; 1863(7 Pt A): 1589-600, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27018747

RESUMO

DOCK7 (dedicator of cytokinesis 7) is a guanidine nucleotide exchange factor (GEF) for Rac1 GTPase that is involved in neuronal polarity and axon generation as well in Schwann cell differentiation and myelination. Recently, we identified DOCK7 as the binding partner of unconventional myosin VI (MVI) in neuronal-lineage PC12 cells and postulated that this interaction could be important in vivo [Majewski et al. (2012) Biochem Cell Biol., 90:565-574]. Herein, we found that MVI-DOCK7 interaction takes also place in other cell lines and demonstrated that MVI cargo domain via its RRL motif binds to DOCK7 C-terminal M2 and DHR2 domains. In MVI knockdown cells, lower Rac1 activity and a decrease of DOCK7 phosphorylation on Tyr1118 were observed, indicating that MVI could contribute to DOCK7 activity. MVI and DOCK7 co-localization was maintained during NGF-stimulated PC12 cell differentiation and observed also in the outgrowths. Also, during differentiation an increase in phosphorylation of DOCK7 as well as of its downstream effector JNK kinase was detected. Interestingly, overexpression of GFP-tagged MVI cargo domain (GFP-GT) impaired protrusion formation indicating that full length protein is important for this process. Moreover, a transient increase in Rac activity observed at 5min of NGF-stimulated differentiation of PC12 cells (overexpressing either GFP or GFP-MVI) was not detected in cells overexpressing the cargo domain. These data indicate that MVI-DOCK7 interaction could have functional implications in the protrusion outgrowth, and full length MVI seems to be important for delivery and maintenance of DOCK7 along the protrusions, and exerting its GEF activity.


Assuntos
Extensões da Superfície Celular/efeitos dos fármacos , Proteínas Ativadoras de GTPase/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fator de Crescimento Neural/farmacologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Extensões da Superfície Celular/metabolismo , Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina , Células HEK293 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Cadeias Pesadas de Miosina/genética , Neurônios/metabolismo , Células PC12 , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Proteínas rac de Ligação ao GTP/metabolismo
16.
Histochem Cell Biol ; 148(4): 445-462, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28500503

RESUMO

Myosin VI (MVI) is a versatile actin-based motor protein that has been implicated in a variety of different cellular processes, including endo- and exocytic vesicle trafficking, Golgi morphology, and actin structure stabilization. A role for MVI in crucial actin-based processes involved in sperm maturation was demonstrated in Drosophila. Because of the prominence and importance of actin structures in mammalian spermiogenesis, we investigated whether MVI was associated with actin-mediated maturation events in mammals. Both immunofluorescence and ultrastructural analyses using immunogold labeling showed that MVI was strongly linked with key structures involved in sperm development and maturation. During the early stage of spermiogenesis, MVI is associated with the Golgi and with coated and uncoated vesicles, which fuse to form the acrosome. Later, as the acrosome spreads to form a cap covering the sperm nucleus, MVI is localized to the acroplaxome, an actin-rich structure that anchors the acrosome to the nucleus. Finally, during the elongation/maturation phase, MVI is associated with the actin-rich structures involved in nuclear shaping: the acroplaxome, manchette, and Sertoli cell actin hoops. Since this is the first report of MVI expression and localization during mouse spermiogenesis and MVI partners in developing sperm have not yet been identified, we discuss some probable roles for MVI in this process. During early stages, MVI is hypothesized to play a role in Golgi morphology and function as well as in actin dynamics regulation important for attachment of developing acrosome to the nuclear envelope. Next, the protein might also play anchoring roles to help generate forces needed for spermatid head elongation. Moreover, association of MVI with actin that accumulates in the Sertoli cell ectoplasmic specialization and other actin structures in surrounding cells suggests additional MVI functions in spermatid movement across the seminiferous epithelium and in sperm release.


Assuntos
Cadeias Pesadas de Miosina/análise , Espermátides/química , Processamento Alternativo/genética , Animais , Variação Genética/genética , Imuno-Histoquímica , Masculino , Camundongos , Cadeias Pesadas de Miosina/genética , Espermátides/citologia , Espermátides/crescimento & desenvolvimento
17.
Histochem Cell Biol ; 144(1): 21-38, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25896210

RESUMO

The important role of unconventional myosin VI (MVI) in skeletal and cardiac muscle has been recently postulated (Karolczak et al. in Histochem Cell Biol 139:873-885, 2013). Here, we addressed for the first time a role for this unique myosin motor in myogenic cells as well as during their differentiation into myotubes. During myoblast differentiation, the isoform expression pattern of MVI and its subcellular localization underwent changes. In undifferentiated myoblasts, MVI-stained puncti were seen throughout the cytoplasm and were in close proximity to actin filaments, Golgi apparatus, vinculin-, and talin-rich focal adhesion as well as endoplasmic reticulum. Colocalization of MVI with endoplasmic reticulum was enhanced during myotube formation, and differentiation-dependent association was also seen in sarcoplasmic reticulum of neonatal rat cardiomyocytes (NRCs). Moreover, we observed enrichment of MVI in myotube regions containing acetylcholine receptor-rich clusters, suggesting its involvement in the organization of the muscle postsynaptic machinery. Overexpression of the H246R MVI mutant (associated with hypertrophic cardiomyopathy) in myoblasts and NRCs caused the formation of abnormally large intracellular vesicles. MVI knockdown caused changes in myoblast morphology and inhibition of their migration. On the subcellular level, MVI-depleted myoblasts exhibited aberrations in the organization of actin cytoskeleton and adhesive structures as well as in integrity of Golgi apparatus and endoplasmic reticulum. Also, MVI depletion or overexpression of H246R mutant caused the formation of significantly wider or aberrant myotubes, respectively, indicative of involvement of MVI in myoblast differentiation. The presented results suggest an important role for MVI in myogenic cells and possibly in myoblast differentiation.


Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/fisiologia , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Adesão Celular , Diferenciação Celular , Linhagem Celular , Movimento Celular , Forma Celular , Citoplasma/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/ultraestrutura , Camundongos , Mioblastos/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Cadeias Pesadas de Miosina/química , Ratos , Retículo Sarcoplasmático/metabolismo
18.
J Muscle Res Cell Motil ; 36(6): 423-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26545904

RESUMO

BAG3 belongs to BAG family of molecular chaperone regulators interacting with HSP70 and anti-apoptotic protein Bcl-2. It is ubiquitously expressed with strong expression in skeletal and cardiac muscle, and is involved in a panoply of cellular processes. Mutations in BAG3 and aberrations in its expression cause fulminant myopathies, presenting with progressive limb and axial muscle weakness, and respiratory insufficiency and neuropathy. Herein, we report a sporadic case of a 15-years old girl with symptoms of myopathy, demyelinating polyneuropathy and asymptomatic long QT syndrome. Genetic testing demonstrated heterozygous mutation Pro209Leu (c.626C > T) in exon 3 of BAG3 gene causing severe myopathy and neuropathy, often associated with restrictive cardiomyopathy. We did not find a mutation in any known LQT syndrome genes. Analysis of muscle biopsy revealed profound disintegration of Z-discs with extensive accumulation of granular debris and large inclusions within fibers. We demonstrated profound alterations in BAG3 distribution as the protein localized to long filamentous structures present across the fibers that were positively stained not only for α-actinin but also for desmin and filamin indicating that those disintegrated Z-disc regions contained also other sarcomeric proteins. The mutation caused a decrease in the content of BAG3 and HSP70, and also of α-actinin desmin, filamin and fast myosin heavy chain, confirming its severe effect on the muscle fiber morphology and thus function. We provide further evidence that BAG3 is associated with Z-disc maintenance, and the Pro209Leu mutation may occur worldwide. We also provide a summary of cases associated with this mutation reported so far.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatias/patologia , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/patologia , Doenças Musculares/patologia , Polineuropatias/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Proteínas Reguladoras de Apoptose/genética , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Feminino , Humanos , Síndrome do QT Longo/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/genética , Doenças Musculares/metabolismo , Mutação/genética , Polineuropatias/genética , Polineuropatias/metabolismo
19.
Amino Acids ; 47(1): 199-212, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25362567

RESUMO

A deficit of exogenous arginine affects growth and viability of numerous cancer cells. Although arginine deprivation-based strategy is currently undergoing clinical trials, molecular mechanisms of tumor cells' response to arginine deprivation are not yet elucidated. We have examined effects of arginine starvation on cell motility, adhesion and invasiveness as well as on actin cytoskeleton organization of human glioblastoma cells. We observed for the first time that arginine, but not lysine, starvation affected cell morphology, significantly inhibited their motility and invasiveness, and impaired adhesion. No effects on glia cells were observed. Also, arginine deprivation in glioblastoma evoked specific changes in actin assembly, decreased ß-actin filament content, and affected its N-terminal arginylation. We suggest that alterations in organization of ß-actin resulted from a decrease of its arginylation could be responsible for the observed effects of arginine deprivation on cell invasiveness and migration. Our data indicate that arginine deprivation-based treatment strategies could inhibit, at least transiently, the invasion process of highly malignant brain tumors and may have a potential for combination therapy to extend overall patient survival.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Arginina/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/fisiopatologia , Citoesqueleto/metabolismo , Glioblastoma/metabolismo , Glioblastoma/fisiopatologia , Neoplasias Encefálicas/patologia , Adesão Celular , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA