Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Biol Chem ; 299(11): 105344, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838167

RESUMO

Recent advances in the understanding of the molecular mechanisms underlying cancer progression have led to the development of novel therapeutic targeting strategies. Aberrant glycosylation patterns and their implication in cancer have gained increasing attention as potential targets due to the critical role of glycosylation in regulating tumor-specific pathways that contribute to cancer cell survival, proliferation, and progression. A special type of glycosylation that has been gaining momentum in cancer research is the modification of nuclear, cytoplasmic, and mitochondrial proteins, termed O-GlcNAcylation. This protein modification is catalyzed by an enzyme called O-GlcNAc transferase (OGT), which uses the final product of the Hexosamine Biosynthetic Pathway (HBP) to connect altered nutrient availability to changes in cellular signaling that contribute to multiple aspects of tumor progression. Both O-GlcNAc and its enzyme OGT are highly elevated in cancer and fulfill the crucial role in regulating many hallmarks of cancer. In this review, we present and discuss the latest findings elucidating the involvement of OGT and O-GlcNAc in cancer.


Assuntos
Glicosilação , Neoplasias , Processamento de Proteína Pós-Traducional , Humanos , Acetilglucosamina/metabolismo , Vias Biossintéticas , N-Acetilglucosaminiltransferases/metabolismo , Neoplasias/metabolismo
2.
Mol Cell ; 54(5): 820-31, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24857547

RESUMO

The hexosamine biosynthetic pathway elevates posttranslational addition of O-linked ß-N-acetylglucosamine (O-GlcNAc) on intracellular proteins. Cancer cells elevate total O-GlcNAcylation by increasing O-GlcNAc transferase (OGT) and/or decreasing O-GlcNAcase (OGA) levels. Reducing O-GlcNAcylation inhibits oncogenesis. Here, we demonstrate that O-GlcNAcylation regulates glycolysis in cancer cells via hypoxia-inducible factor 1 (HIF-1α) and its transcriptional target GLUT1. Reducing O-GlcNAcylation increases α-ketoglutarate, HIF-1 hydroxylation, and interaction with von Hippel-Lindau protein (pVHL), resulting in HIF-1α degradation. Reducing O-GlcNAcylation in cancer cells results in activation of endoplasmic reticulum (ER) stress and cancer cell apoptosis mediated through C/EBP homologous protein (CHOP). HIF-1α and GLUT1 are critical for OGT-mediated regulation of metabolic stress, as overexpression of stable HIF-1 or GLUT1 rescues metabolic defects. Human breast cancers with high levels of HIF-1α contain elevated OGT, and lower OGA levels correlate independently with poor patient outcome. Thus, O-GlcNAcylation regulates cancer cell metabolic reprograming and survival stress signaling via regulation of HIF-1α.


Assuntos
Neoplasias da Mama/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Processamento de Proteína Pós-Traducional , Acetilglucosamina/metabolismo , Animais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Ciclo do Ácido Cítrico , Estresse do Retículo Endoplasmático , Feminino , Glicólise , Glicosilação , Humanos , Hidroxilação , Estimativa de Kaplan-Meier , Camundongos , Camundongos Nus , N-Acetilglucosaminiltransferases/metabolismo , Transplante de Neoplasias , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo
3.
BMC Biol ; 17(1): 52, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31272438

RESUMO

Altered metabolism and deregulated cellular energetics are now considered a hallmark of all cancers. Glucose, glutamine, fatty acids, and amino acids are the primary drivers of tumor growth and act as substrates for the hexosamine biosynthetic pathway (HBP). The HBP culminates in the production of an amino sugar uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that, along with other charged nucleotide sugars, serves as the basis for biosynthesis of glycoproteins and other glycoconjugates. These nutrient-driven post-translational modifications are highly altered in cancer and regulate protein functions in various cancer-associated processes. In this review, we discuss recent progress in understanding the mechanistic relationship between the HBP and cancer.


Assuntos
Hexosaminas/metabolismo , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Vias Biossintéticas
4.
J Ultrasound Med ; 38(12): 3221-3228, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31124171

RESUMO

OBJECTIVES: Hypoxic cancer cells have been shown to be more resistant to radiation therapy than normoxic cells. Hence, this study investigated whether ultrasound (US)-induced rupture of oxygen-carrying microbubbles (MBs) would enhance the response of breast cancer metastases to radiation. METHODS: Nude mice (n = 15) received stereotactic injections of brain-seeking MDA-MB-231 breast cancer cells into the right hemisphere. Animals were randomly assigned into 1 of 5 treatment groups: no intervention, 10 Gy radiation using a small-animal radiation research platform, nitrogen-carrying MBs combined with US-mediated MB rupture immediately before 10 Gy radiation, oxygen-carrying MBs immediately before 10 Gy radiation, and oxygen-carrying MBs with US-mediated MB rupture immediately before 10 Gy radiation. Tumor progression was monitored with 3-dimensional US, and overall survival was noted. RESULTS: All groups except those treated with oxygen-carrying MB rupture and radiation had continued rapid tumor growth after treatment. Tumors treated with radiation alone showed a mean increase in volume ± SD of 337% ± 214% during the week after treatment. Tumors treated with oxygen-carrying MBs and radiation without MB rupture showed an increase in volume of 383% ± 226%. Tumors treated with radiation immediately after rupture of oxygen-carrying MBs showed an increase in volume of only 41% ± 1% (P = 0.045), and this group also showed a 1 week increase in survival time. CONCLUSIONS: Adding US-ruptured oxygen-carrying MBs to radiation therapy appears to delay tumor progression and improve survival in a murine model of metastatic breast cancer.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Portadores de Fármacos , Microbolhas , Oxigênio/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Nus , Distribuição Aleatória , Ultrassonografia
5.
J Bioenerg Biomembr ; 50(3): 189-198, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29344764

RESUMO

Elevated O-GlcNAcylation is emerging as a general characteristic of most cancers. Although O-GlcNAcylation can regulate many cell biological pathways, recent evidence suggests that it is a key regulator of metabolic pathways including glycolysis in cancer cells. This review summarizes our current understanding of how O-GlcNAcylation regulates glycolytic pathways and contributes to alterations in cancer cell metabolism.


Assuntos
Acetilglucosamina/metabolismo , Glicólise , Redes e Vias Metabólicas , Sistema Nervoso/metabolismo , Animais , Glicosilação , Humanos
6.
J Biol Chem ; 288(22): 15865-77, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23585570

RESUMO

ERBB2, a receptor tyrosine kinase amplified in breast cancer, is a well established regulator of tumor growth in vivo and anoikis resistance leading to disruption of architecture in three-dimensional mammary epithelial acinar structures in vitro. ERBB2 promotes anoikis resistance by maintaining signaling pathways and by rescuing metabolic defects and thus inhibiting accumulation of deleterious reactive oxygen species. Recent evidence suggests that hypoxia, via hypoxia-inducible factors (HIFs), can inhibit anoikis; thus, we hypothesized that HIF-1 may play a role in ERBB2-mediated anoikis resistance and oncogenesis. Indeed, tumors isolated from MMTV-Neu mice contain elevated HIF-1α levels and tumor cells created from MMTV-Neu mice harboring deletion of Hif1α alleles reduced primary tumor growth in vivo. ERBB2 overexpressing cancer cells stabilize HIF under normoxic conditions and require HIF-1 for ERBB2-mediated anchorage-independence, three-dimensional culture growth and anoikis resistance. HIF-1 reduction in ERBB2 cells was associated with induction of the pro-anoikis protein BIM and decreased ERK and AKT signaling during cell detachment. ERBB2-mediated inhibition of metabolic defects, including decreased reactive oxygen species generation in suspension, required HIF-1 expression that was critical for ERBB2-mediated oncogenesis. Gene expression profiling of hypoxic three-dimensional acinar structures identified a number of genes elevated in response to hypoxia that are known ERBB2 targets, suggesting that hypoxic conditions and ERBB2 overexpression share both phenotypic and genetic components via HIF-1 regulation. Thus, our data demonstrate that ERBB2 requires HIF-1 for tumor growth and suggest that HIF is a major downstream regulator of ERBB2 that protects cells from anoikis and metabolic stress caused by decreased matrix adhesion.


Assuntos
Anoikis , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sistema de Sinalização das MAP Quinases , Neoplasias Mamárias Animais/metabolismo , Receptor ErbB-2/biossíntese , Animais , Adesão Celular/genética , Feminino , Deleção de Genes , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/genética , Estresse Fisiológico/genética
7.
Trends Endocrinol Metab ; 35(2): 88-90, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38097465

RESUMO

High dietary fructose consumption is linked to multiple disease states, including cancer. Zhou and colleagues recently reported a novel mechanism where high dietary fructose levels increase acetate production by the gut microbiome increasing post-translational modification O-GlcNAcylation in liver cells, which contributes to disease progression in mouse models of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Frutose/efeitos adversos , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Processamento de Proteína Pós-Traducional , Acetatos
8.
Front Pharmacol ; 15: 1394685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818373

RESUMO

Breast cancer brain metastasis (BCBM) typically results in an end-stage diagnosis and is hindered by a lack of brain-penetrant drugs. Tumors in the brain rely on the conversion of acetate to acetyl-CoA by the enzyme acetyl-CoA synthetase 2 (ACSS2), a key regulator of fatty acid synthesis and protein acetylation. Here, we used a computational pipeline to identify novel brain-penetrant ACSS2 inhibitors combining pharmacophore-based shape screen methodology with absorption, distribution, metabolism, and excretion (ADME) property predictions. We identified compounds AD-5584 and AD-8007 that were validated for specific binding affinity to ACSS2. Treatment of BCBM cells with AD-5584 and AD-8007 leads to a significant reduction in colony formation, lipid storage, acetyl-CoA levels and cell survival in vitro. In an ex vivo brain-tumor slice model, treatment with AD-8007 and AD-5584 reduced pre-formed tumors and synergized with irradiation in blocking BCBM tumor growth. Treatment with AD-8007 reduced tumor burden and extended survival in vivo. This study identifies selective brain-penetrant ACSS2 inhibitors with efficacy towards breast cancer brain metastasis.

9.
J Biol Chem ; 287(14): 11070-81, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22275356

RESUMO

Cancer cells universally increase glucose and glutamine consumption, leading to the altered metabolic state known as the Warburg effect; one metabolic pathway, highly dependent on glucose and glutamine, is the hexosamine biosynthetic pathway. Increased flux through the hexosamine biosynthetic pathway leads to increases in the post-translational addition of O-linked ß-N-acetylglucosamine (O-GlcNAc) to various nuclear and cytosolic proteins. A number of these target proteins are implicated in cancer, and recently, O-GlcNAcylation was shown to play a role in breast cancer; however, O-GlcNAcylation in other cancers remains poorly defined. Here, we show that O-GlcNAc transferase (OGT) is overexpressed in prostate cancer compared with normal prostate epithelium and that OGT protein and O-GlcNAc levels are elevated in prostate carcinoma cell lines. Reducing O-GlcNAcylation in PC3-ML cells was associated with reduced expression of matrix metalloproteinase (MMP)-2, MMP-9, and VEGF, resulting in inhibition of invasion and angiogenesis. OGT-mediated regulation of invasion and angiogenesis was dependent upon regulation of the oncogenic transcription factor FoxM1, a key regulator of invasion and angiogenesis, as reducing OGT expression led to increased FoxM1 protein degradation. Conversely, overexpression of a degradation-resistant FoxM1 mutant abrogated OGT RNAi-mediated effects on invasion, MMP levels, angiogenesis, and VEGF expression. Using a mouse model of metastasis, we found that reduction of OGT expression blocked bone metastasis. Altogether, these data suggest that as prostate cancer cells alter glucose and glutamine levels, O-GlcNAc modifications and OGT levels become elevated and are required for regulation of malignant properties, implicating OGT as a novel therapeutic target in the treatment of cancer.


Assuntos
N-Acetilglucosaminiltransferases/metabolismo , Neovascularização Patológica/enzimologia , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/patologia , Acetilglucosamina/metabolismo , Animais , Neoplasias Ósseas/prevenção & controle , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Inibidor de Quinase Dependente de Ciclina p27/genética , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Camundongos , Mutação , N-Acetilglucosaminiltransferases/deficiência , N-Acetilglucosaminiltransferases/genética , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Proteólise , Interferência de RNA , Fator A de Crescimento do Endotélio Vascular/genética
10.
Adv Cancer Res ; 157: 195-228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36725109

RESUMO

Tumor growth and metastasis can be promoted by a small sub-population of cancer cells, termed cancer stem-like cells (CSCs). While CSCs possess capability in self-renewing and differentiating, the hierarchy of CSCs during tumor growth is highly plastic. This plasticity in CSCs fate and function can be regulated by signals from the tumor microenvironment. One emerging pathway in CSCs that connects the alteration in microenvironment and signaling network in cancer cells is the hexosamine biosynthetic pathway (HBP). The final product of HBP, UDP-N-acetylglucosamine (UDP-GlcNAc), is utilized for glycosylating of membrane and secreted proteins, but also nuclear and cytoplasmic proteins by the post-translational modification O-GlcNAcylation. O-GlcNAcylation and its enzyme, O-GlcNAc transferase (OGT), are upregulated in nearly all cancers and been linked to regulate many cancer cell phenotypes. Recent studies have begun to connect OGT and O-GlcNAcylation to regulation of CSCs. In this review, we will discuss the emerging role of OGT and O-GlcNAcylation in regulating fate and plasticity of CSCs, as well as the potential in targeting OGT/O-GlcNAcylation in CSCs.


Assuntos
Plasticidade Celular , Neoplasias , Humanos , Processamento de Proteína Pós-Traducional , Neoplasias/patologia , Nutrientes , Difosfato de Uridina/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina , Microambiente Tumoral
11.
Front Oncol ; 13: 1141834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152043

RESUMO

Introduction: Breast tumor development is regulated by a sub-population of breast cancer cells, termed cancer stem-like cells (CSC), which are capable of self-renewing and differentiating, and are involved in promoting breast cancer invasion, metastasis, drug resistance and relapse. CSCs are highly adaptable, capable of reprogramming their own metabolism and signaling activity in response to stimuli within the tumor microenvironment. Recently, the nutrient sensor O-GlcNAc transferase (OGT) and O-GlcNAcylation was shown to be enriched in CSC populations, where it promotes the stemness and tumorigenesis of breast cancer cells in vitro and in vivo. This enrichment was associated with upregulation of the transcription factor Kruppel-like-factor 8 (KLF8) suggesting a potential role of KLF8 in regulating CSCs properties. Methods: Triple-negative breast cancer cells were genetically modified to generate KLF8 overexpressing or KLF8 knock-down cells. Cancer cells, control or with altered KLF8 expression were analyzed to assess mammosphere formation efficiency, CSCs frequency and expression of CSCs factors. Tumor growth in vivo of control or KLF8 knock-down cells was assessed by fat-pad injection of these cell in immunocompromised mice. Results: Here, we show that KLF8 is required and sufficient for regulating CSC phenotypes and regulating transcription factors SOX2, NANOG, OCT4 and c-MYC. KLF8 levels are associated with chemoresistance in triple negative breast cancer patients and overexpression in breast cancer cells increased paclitaxel resistance. KLF8 and OGT co-regulate each other to form a feed-forward loop to promote CSCs phenotype and mammosphere formation of breast cancer cells. Discussion: These results suggest a critical role of KLF8 and OGT in promoting CSCs and cancer progression, that may serve as potential targets for developing strategy to target CSCs specifically.

12.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187734

RESUMO

Breast-cancer brain metastasis (BCBM) poses a significant clinical challenge, resulting in an end-stage diagnosis and hindered by limited therapeutic options. The blood-brain barrier (BBB) acts as an anatomical and physiological hurdle for therapeutic compounds, restricting the effective delivery of therapies to the brain. In order to grow and survive in a nutrient-poor environment, tumors in the brain must adapt to their metabolic needs, becoming highly dependent on acetate. These tumors rely on the conversion of acetate to acetyl-CoA by the enzyme Acetyl-CoA synthetase 2 (ACSS2), a key metabolic enzyme involved in regulating fatty acid synthesis and protein acetylation in tumor cells. ACSS2 has emerged as a crucial enzyme required for the growth of tumors in the brain. Here, we utilized a computational pipeline, combining pharmacophore-based shape screen methodology with ADME property predictions to identify novel brain-permeable ACSS2 inhibitors. From a small molecule library, this approach identified 30 potential ACSS2 binders, from which two candidates, AD-5584 and AD-8007, were validated for their binding affinity, predicted metabolic stability, and, notably, their ability to traverse the BBB. We show that treatment of BCBM cells, MDA-MB-231BR, with AD-5584 and AD-8007 leads to a significant reduction in lipid storage, reduction in colony formation, and increase in cell death in vitro . Utilizing an ex vivo orthotopic brain-slice tumor model, we show that treatment with AD-8007 and AD-5584 significantly reduces tumor size and synergizes with radiation in blocking BCBM tumor growth ex vivo. Importantly, we show that following intraperitoneal injections with AD-5584 and AD-8007, we can detect these compounds in the brain, confirming their BBB permeability. Thus, we have identified and validated novel ACSS2 inhibitor candidates for further drug development and optimization as agents for treating patients with breast cancer brain metastasis.

13.
Biochim Biophys Acta ; 1813(1): 168-78, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20951169

RESUMO

Strong evidences support the inhibitory activity of cellular FLICE-inhibitory protein (FLIP) in the apoptotic signalling by death receptors in tumor cells. However, little is known about the role of FLIP in the regulation of apoptosis in non-transformed cells. In this report, we demonstrate that FLIP(L) plays an important role as a survival protein in non-transformed breast epithelial cells. Silencing of FLIP(L) by siRNA methodology enhances TRAIL-R2 expression and activates a caspase-dependent cell death process in breast epithelial cells. This cell death requires the expression of TRAIL, TRAIL-R2, FADD and procaspase-8 proteins. A mitochondria-operated apoptotic pathway is partially required for FLIP(L) siRNA-induced apoptosis. Interestingly, FLIP(L) silencing markedly abrogates formation of acinus-like structures in a three-dimensional basement membrane culture model (3D) of the human mammary MCF-10A cell line through a caspase-8 dependent process. Furthermore, over-expression of FLIP(L) in MCF-10A cells delayed lumen formation in 3D cultures. Our results highlight the central role of FLIP in maintaining breast epithelial cell viability and suggest that the mechanisms regulating FLIP levels should be finely controlled to prevent unwanted cell demise.


Assuntos
Apoptose , Mama/citologia , Mama/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Morfogênese , Western Blotting , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/antagonistas & inibidores , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proliferação de Células , Células Cultivadas , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
14.
J Cell Sci ; 123(Pt 8): 1373-82, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20332114

RESUMO

ErbB2, a receptor tyrosine kinase highly expressed in many tumors, is known to inhibit apoptotic signals. Overexpression of ErbB2 causes anoikis resistance that contributes to luminal filling in three-dimensional mammary epithelial acinar structures in vitro. Given that integrins and growth factor receptors are highly interdependent for function, we examined the role of integrin subunits in ErbB2-mediated survival signaling. Here, we show that MCF-10A cells overexpressing ErbB2 upregulate integrin alpha5 via the MAP-kinase pathway in three-dimensional acini and found elevated integrin alpha5 levels associated with ErbB2 status in human breast cancer. Integrin alpha5 is required for ErbB2-mediated anoikis resistance and for optimal ErbB2 signaling to the Mek-Erk-Bim axis as depletion of integrin alpha5 reverses anoikis resistance and Bim inhibition. Integrin alpha5 is required for full activation of ErbB2 tyrosine phosphorylation on Y877 and ErbB2 phosphorylation is associated with increased activity of Src in the absence of adhesion. Indeed, we show that blocking elevated Src activity during cell detachment reverses ErbB2-mediated survival and Bim repression. Thus, integrin alpha5 serves as a key mediator of Src and ErbB2-survival signaling in low adhesion states, which are necessary to block the pro-anoikis mediator Bim, and we suggest that this pathway represents a potential novel therapeutic target in ErbB2-positive tumors.


Assuntos
Anoikis , Células Epiteliais/enzimologia , Integrina alfa5/metabolismo , Glândulas Mamárias Humanas/citologia , Receptor ErbB-2/metabolismo , Quinases da Família src/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adesão Celular , Sobrevivência Celular , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina alfa5/genética , Sistema de Sinalização das MAP Quinases , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Morfogênese , Proteínas Proto-Oncogênicas/metabolismo , Regulação para Cima/genética
15.
Cell Signal ; 90: 110201, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800629

RESUMO

O-GlcNAcylation is a post-translational modification occurring on serine/threonine residues of nuclear and cytoplasmic proteins, mediated by the enzymes OGT and OGA which catalyze the addition or removal of the UDP-GlcNAc moieties, respectively. Structural changes brought by this modification lead to alternations of protein stability, protein-protein interactions, and phosphorylation. Importantly, O-GlcNAcylation is a nutrient sensor by coupling nutrient sensing with cellular signaling. Elevated levels of OGT and O-GlcNAc have been reported in a variety of cancers and has been linked to regulation of multiple cancer signaling pathways. In this review, we discuss the most recent findings on the role of O-GlcNAcylation as a metabolic sensor in signaling pathways and immune response in cancer.


Assuntos
Acetilglucosamina , Neoplasias , Acetilglucosamina/metabolismo , Humanos , N-Acetilglucosaminiltransferases/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional
16.
Oncogene ; 41(14): 2122-2136, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35190642

RESUMO

Glioblastomas (GBMs) preferentially generate acetyl-CoA from acetate as a fuel source to promote tumor growth. O-GlcNAcylation has been shown to be elevated by increasing O-GlcNAc transferase (OGT) in many cancers and reduced O-GlcNAcylation can block cancer growth. Here, we identify a novel mechanism whereby OGT regulates acetate-dependent acetyl-CoA and lipid production by regulating phosphorylation of acetyl-CoA synthetase 2 (ACSS2) by cyclin-dependent kinase 5 (CDK5). OGT is required and sufficient for GBM cell growth and regulates acetate conversion to acetyl-CoA and lipids. Elevating O-GlcNAcylation in GBM cells increases phosphorylation of ACSS2 on Ser-267 in a CDK5-dependent manner. Importantly, we show that ACSS2 Ser-267 phosphorylation regulates its stability by reducing polyubiquitination and degradation. ACSS2 Ser-267 is critical for OGT-mediated GBM growth as overexpression of ACSS2 Ser-267 phospho-mimetic rescues growth in vitro and in vivo. Importantly, we show that pharmacologically targeting OGT and CDK5 reduces GBM growth ex vivo. Thus, the OGT/CDK5/ACSS2 pathway may be a way to target altered metabolic dependencies in brain tumors.


Assuntos
Glioblastoma , Acetato-CoA Ligase/metabolismo , Acetatos/metabolismo , Acetatos/farmacologia , Linhagem Celular Tumoral , Humanos , N-Acetilglucosaminiltransferases/metabolismo , Fosforilação
17.
Nat Cell Biol ; 5(8): 733-40, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12844146

RESUMO

Epithelial cells must adhere to the extracellular matrix (ECM) for survival, as detachment from matrix triggers apoptosis or anoikis. Integrins are major mediators of adhesion between cells and ECM proteins, and transduce signals required for cell survival. Recent evidence suggests that integrin receptors are coupled to growth factor receptors in the regulation of multiple biological functions; however, mechanisms involved in coordinate regulation of cell survival are poorly understood and mediators responsible for anoikis have not been well characterized. Here, we identify the pro-apoptotic protein Bim as a critical mediator of anoikis in epithelial cells. Bim is strongly induced after cell detachment and downregulation of Bim expression by RNA interference (RNAi) inhibits anoikis. Detachment-induced expression of Bim requires a lack of beta(1)-integrin engagement, downregulation of EGF receptor (EGFR) expression and inhibition of Erk signalling. Overexpressed EGFR was uncoupled from integrin regulation, resulting in the maintenance of Erk activation in suspension, and a block in Bim expression and anoikis. Thus, Bim functions as a key sensor of integrin and growth factor signals to the Erk pathway, and loss of such coordinate regulation may contribute to tumour progression.


Assuntos
Anoikis/fisiologia , Proteínas de Transporte/metabolismo , Receptores ErbB/metabolismo , Integrinas/metabolismo , Proteínas de Membrana , Proteínas Proto-Oncogênicas , Animais , Proteínas Reguladoras de Apoptose , Proteína 11 Semelhante a Bcl-2 , Proteínas de Transporte/genética , Fracionamento Celular , Inibidores Enzimáticos/metabolismo , Receptores ErbB/genética , Matriz Extracelular/metabolismo , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , RNA Interferente Pequeno , Células Tumorais Cultivadas
18.
J Vis Exp ; (175)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34633392

RESUMO

Brain metastasis is a serious consequence of breast cancer for women as these tumors are difficult to treat and are associated with poor clinical outcomes. Preclinical mouse models of breast cancer brain metastatic (BCBM) growth are useful but are expensive, and it is difficult to track live cells and tumor cell invasion within the brain parenchyma. Presented here is a protocol for ex vivo brain slice cultures from xenografted mice containing intracranially injected breast cancer brain-seeking clonal sublines. MDA-MB-231BR luciferase tagged cells were injected intracranially into the brains of Nu/Nu female mice, and following tumor formation, the brains were isolated, sliced, and cultured ex vivo. The tumor slices were imaged to identify tumor cells expressing luciferase and monitor their proliferation and invasion in the brain parenchyma for up to 10 days. Further, the protocol describes the use of time-lapse microscopy to image the growth and invasive behavior of the tumor cells following treatment with ionizing radiation or chemotherapy. The response of tumor cells to treatments can be visualized by live-imaging microscopy, measuring bioluminescence intensity, and performing histology on the brain slice containing BCBM cells. Thus, this ex vivo slice model may be a useful platform for rapid testing of novel therapeutic agents alone or in combination with radiation to identify drugs personalized to target an individual patient's breast cancer brain metastatic growth within the brain microenvironment.


Assuntos
Neoplasias Encefálicas , Fenômenos Fisiológicos do Sistema Nervoso , Animais , Encéfalo , Feminino , Luciferases , Camundongos , Camundongos Nus , Microambiente Tumoral
19.
Mol Cancer Res ; 18(4): 585-598, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31974291

RESUMO

Breast tumors are heterogeneous and composed of different subpopulation of cells, each with dynamic roles that can change with stage, site, and microenvironment. Cellular heterogeneity is, in part, due to cancer stem-like cells (CSC) that share properties with stem cells and are associated with treatment resistance. CSCs rewire metabolism to meet energy demands of increased growth and biosynthesis. O-GlcNAc transferase enzyme (OGT) uses UDP-GlcNAc as a substrate for adding O-GlcNAc moieties to nuclear and cytoplasmic proteins. OGT/O-GlcNAc levels are elevated in multiple cancers and reducing OGT in cancer cells blocks tumor growth. Here, we report that breast CSCs enriched in mammosphere cultures contain elevated OGT/O-GlcNAcylation. Inhibition of OGT genetically or pharmacologically reduced mammosphere forming efficiency, the CD44H/CD24L, NANOG+, and ALDH+ CSC population in breast cancer cells. Conversely, breast cancer cells overexpressing OGT increased mammosphere formation, CSC populations in vitro, and also increased tumor initiation and CSC frequency in vivo. Furthermore, OGT regulates expression of a number of epithelial-to-mesenchymal transition and CSC markers including CD44, NANOG, and c-Myc. In addition, we identify Krüppel-like factor 8 (KLF8) as a novel regulator of breast cancer mammosphere formation and a critical target of OGT in regulating CSCs. IMPLICATIONS: These findings demonstrate that OGT plays a key role in the regulation of breast CSCs in vitro and tumor initiation in vivo, in part, via regulation of KLF8, and thus inhibition of OGT may serve as a therapeutic strategy to regulate tumor-initiating activity.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , N-Acetilglucosaminiltransferases/metabolismo , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , N-Acetilglucosaminiltransferases/genética , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia
20.
Mol Cell Biol ; 25(11): 4591-601, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15899862

RESUMO

Epithelial cells organize into cyst-like structures that contain a spherical monolayer of cells that enclose a central lumen. Using a three-dimensional basement membrane culture model in which mammary epithelial cells form hollow, acinus-like structures, we previously demonstrated that lumen formation is achieved, in part, through apoptosis of centrally localized cells. We demonstrate that the proapoptotic protein Bim may selectively trigger apoptosis of the centrally localized acinar cells, leading to temporally controlled lumen formation. Bim is not detectable during early stages of three-dimensional mammary acinar morphogenesis and is then highly upregulated in all cells of acini, coincident with detection of apoptosis in the centrally localized acinar cells. Inhibition of Bim expression by RNA interference transiently blocks luminal apoptosis and delays lumen formation. Oncogenes that induce acinar luminal filling, such as ErbB2 and v-Src, suppress expression of Bim through a pathway dependent on Erk-mitogen-activated protein kinase; however, HPV 16 E7, an oncogene that stimulates cell proliferation but not luminal filling, is unable to reduce Bim expression. Thus, Bim is a critical regulator of luminal apoptosis during mammary acinar morphogenesis in vitro and may be an important target of oncogenes that disrupt glandular epithelial architecture.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Genes erbB-2/fisiologia , Genes src/fisiologia , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Proteína Oncogênica pp60(v-src)/metabolismo , Receptor ErbB-2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/genética , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose , Proteína 11 Semelhante a Bcl-2 , Proteínas de Transporte , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Glândulas Mamárias Humanas/citologia , Proteínas de Membrana , Morfogênese , Mutação , Fosforilação , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Proteína bcl-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA