Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 505(7482): 239-43, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24291791

RESUMO

The increasing demands placed on natural resources for fuel and food production require that we explore the use of efficient, sustainable feedstocks such as brown macroalgae. The full potential of brown macroalgae as feedstocks for commercial-scale fuel ethanol production, however, requires extensive re-engineering of the alginate and mannitol catabolic pathways in the standard industrial microbe Saccharomyces cerevisiae. Here we present the discovery of an alginate monomer (4-deoxy-L-erythro-5-hexoseulose uronate, or DEHU) transporter from the alginolytic eukaryote Asteromyces cruciatus. The genomic integration and overexpression of the gene encoding this transporter, together with the necessary bacterial alginate and deregulated native mannitol catabolism genes, conferred the ability of an S. cerevisiae strain to efficiently metabolize DEHU and mannitol. When this platform was further adapted to grow on mannitol and DEHU under anaerobic conditions, it was capable of ethanol fermentation from mannitol and DEHU, achieving titres of 4.6% (v/v) (36.2 g l(-1)) and yields up to 83% of the maximum theoretical yield from consumed sugars. These results show that all major sugars in brown macroalgae can be used as feedstocks for biofuels and value-added renewable chemicals in a manner that is comparable to traditional arable-land-based feedstocks.


Assuntos
Biocombustíveis/provisão & distribuição , Metabolismo dos Carboidratos , Etanol/metabolismo , Engenharia Genética , Phaeophyceae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alginatos/metabolismo , Anaerobiose , Ascomicetos/genética , Ascomicetos/metabolismo , Biotecnologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Evolução Molecular , Fermentação , Teste de Complementação Genética , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Manitol/metabolismo , Phaeophyceae/genética , Ácido Quínico/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Alga Marinha/genética , Alga Marinha/metabolismo , Ácidos Urônicos/metabolismo
2.
Nat Commun ; 4: 2503, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24056574

RESUMO

Evaluating the performance of engineered biological systems with high accuracy and precision is nearly impossible with the use of plasmids due to phenotypic noise generated by genetic instability and natural population dynamics. Minimizing this uncertainty therefore requires a paradigm shift towards engineering at the genomic level. Here, we introduce an advanced design principle for the stable installment and implementation of complex biological systems through recombinase-assisted genome engineering (RAGE). We apply this concept to the development of a robust strain of Escherichia coli capable of producing ethanol directly from brown macroalgae. RAGE significantly expedites the optimal implementation of a 34 kb heterologous pathway for alginate metabolism based on genetic background, integration locus, copy number and compatibility with two other pathway modules (alginate degradation and ethanol production). The resulting strain achieves a ~40% higher titre than its plasmid-based counterpart and enables substantial improvements in titre (~330%) and productivity (~1,200%) after 50 generations.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Recombinases/genética , Alginatos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Etanol/metabolismo , Engenharia Genética , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Redes e Vias Metabólicas , Mutagênese Insercional , Phaeophyceae/química , Plasmídeos , Recombinases/metabolismo
3.
Science ; 335(6066): 308-13, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22267807

RESUMO

Prospecting macroalgae (seaweeds) as feedstocks for bioconversion into biofuels and commodity chemical compounds is limited primarily by the availability of tractable microorganisms that can metabolize alginate polysaccharides. Here, we present the discovery of a 36-kilo-base pair DNA fragment from Vibrio splendidus encoding enzymes for alginate transport and metabolism. The genomic integration of this ensemble, together with an engineered system for extracellular alginate depolymerization, generated a microbial platform that can simultaneously degrade, uptake, and metabolize alginate. When further engineered for ethanol synthesis, this platform enables bioethanol production directly from macroalgae via a consolidated process, achieving a titer of 4.7% volume/volume and a yield of 0.281 weight ethanol/weight dry macroalgae (equivalent to ~80% of the maximum theoretical yield from the sugar composition in macroalgae).


Assuntos
Alginatos/metabolismo , Biocombustíveis , Escherichia coli/genética , Etanol/metabolismo , Engenharia Metabólica , Phaeophyceae/metabolismo , Alga Marinha/metabolismo , Vibrio/enzimologia , Alginatos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Biomassa , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Escherichia coli/metabolismo , Fermentação , Genes Bacterianos , Glucose/metabolismo , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Ácido Láctico/metabolismo , Manitol/metabolismo , Redes e Vias Metabólicas , Fases de Leitura Aberta , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Vibrio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA