RESUMO
The ^{22}Mg(α,p)^{25}Al reaction rate has been identified as a major source of uncertainty for understanding the nucleosynthesis flow in Type-I x-ray bursts. We report a direct measurement of the energy- and angle-integrated cross sections of this reaction in a 3.3-6.9 MeV center-of-mass energy range using the MUlti-Sampling Ionization Chamber (MUSIC). The new ^{22}Mg(α,p)^{25}Al reaction rate is a factor of â¼4 higher than the previous direct measurement of this reaction within temperatures relevant for x-ray bursts, resulting in the ^{22}Mg waiting point of x-ray burst nucleosynthesis flow to be significantly bypassed via the (α,p) reaction.
RESUMO
The ^{36}Ar(n,γ)^{37}Ar (t_{1/2}=35 d) and ^{38}Ar(n,γ)^{39}Ar (269 yr) reactions were studied for the first time with a quasi-Maxwellian (kTâ¼47 keV) neutron flux for Maxwellian average cross section (MACS) measurements at stellar energies. Gas samples were irradiated at the high-intensity Soreq applied research accelerator facility-liquid-lithium target neutron source and the ^{37}Ar/^{36}Ar and ^{39}Ar/^{38}Ar ratios in the activated samples were determined by accelerator mass spectrometry at the ATLAS facility (Argonne National Laboratory). The ^{37}Ar activity was also measured by low-level counting at the University of Bern. Experimental MACS of ^{36}Ar and ^{38}Ar, corrected to the standard 30 keV thermal energy, are 1.9(3) and 1.3(2) mb, respectively, differing from the theoretical and evaluated values published to date by up to an order of magnitude. The neutron-capture cross sections of ^{36,38}Ar are relevant to the stellar nucleosynthesis of light neutron-rich nuclides; the two experimental values are shown to affect the calculated mass fraction of nuclides in the region A=36-48 during the weak s process. The new production cross sections have implications also for the use of ^{37}Ar and ^{39}Ar as environmental tracers in the atmosphere and hydrosphere.
RESUMO
The existence of ^{26}Al (t_{1/2}=7.17×10^{5} yr) in the interstellar medium provides a direct confirmation of ongoing nucleosynthesis in the Galaxy. The presence of a low-lying 0^{+} isomer (^{26}Al^{m}), however, severely complicates the astrophysical calculations. We present for the first time a study of the ^{26}Al^{m}(d,p)^{27}Al reaction using an isomeric ^{26}Al beam. The selectivity of this reaction allowed the study of â=0 transfers to T=1/2, and T=3/2 states in ^{27}Al. Mirror symmetry arguments were then used to constrain the ^{26}Al^{m}(p,γ)^{27}Si reaction rate and provide an experimentally determined upper limit of the rate for the destruction of isomeric ^{26}Al via radiative proton capture reactions, which is expected to dominate the destruction path of ^{26}Al^{m} in asymptotic giant branch stars, classical novae, and core collapse supernovae.
RESUMO
Endurance-based exercise training can lead to alterations in components of the immune system, but it is unknown how psychological stress (another potent immunomodulator) may impact these changes. The purpose of this study was to determine the moderating role of psychological stress on exercise-induced immune changes. Twenty-nine recreational runners were recruited for this study four weeks before completing a marathon. Each subject reported: weekly training volume (miles/wk) for the week prior to the study visit; completed the Perceived Stress Scale (PSS), the state version of the State-Trait Anxiety Inventory (STAI) and the Penn State Worry Questionnaire (PSWQ); and donated blood for assessment of CD4+ T cell subpopulations and mitogen-induced cytokine production. Participants ran an average of 30 (±13.4) miles (1 mile=1.6 km) per week. Average values (SD) for immune biomarkers were: regulatory T cells (Treg), 3.2% (±1.2%); type 1 regulatory cells (Tr1), 27.1% (±8.3%); T helper 3 (Th3), 1.8% (±0.7%); interferon gamma (IFNγ), 3.1 pg/ml (±1.0); interleukin (IL)-4, 1.4 pg/ml (±1.1); IFNγ/IL-4, 8.6 (±1.2); IL-10, 512 pg/ml (±288). There was a significant relationship between running volume and both Treg cell numbers (slope of the regression line (ß)=0.05, p less than 0.001) and IL-10 production ß=-10.6, p=0.002), and there was a trending relationship between running volume and Tr1 cell numbers (ß=-0.2%, p=0.064). Perceived stress was a trending moderator of the running volume-Treg relationship, whereas worry was a significant moderator of the running volume-IFNγ and running volume-IFNγ/IL-4 relationships. These data indicate that various forms of psychological stress can impact endurance exercise-based changes in certain immune biomarkers. These changes may reflect an increased susceptibility to clinical risks in some individuals.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Corrida , Estresse Psicológico/imunologia , Adulto , Feminino , Humanos , Interferon gama/análise , Interleucina-4/análise , Masculino , Resistência Física , Linfócitos T Reguladores/imunologiaRESUMO
Measurements of the excitation function for the fusion of (24)Mg+(30)Si (Q=17.89 MeV)have been extended toward lower energies with respect to previous experimental data. The S-factor maximum observed in this large, positive-Q-value system is the most pronounced among such systems studied thus far. The significance and the systematics of an S-factor maximum in systems with positive fusion Q values are discussed. This result would strongly impact the extrapolated cross sections and reaction rates in the carbon and oxygen burnings and, thus, the study of the history of stellar evolution.
RESUMO
The 1809-keV γ ray from the decay of (26)Al(g) is an important target for γ-ray astronomy. In the convective C/Ne burning shell of massive presupernova stars, the (23)Na(α,p)(26)Mg reaction directly influences the production of (26)Al. We have performed a direct measurement of the (23)Na(α,p)(26)Mg reaction cross section at the appropriate astrophysically important energies. The stellar rate calculated in the present work is larger than the recommended rate by nearly a factor of 40 and could strongly affect the production of (26)Al in massive stars.
RESUMO
The interaction between neutron-rich nuclei plays an important role for understanding the reaction mechanism of the fusion process as well as for the energy production through pycnonuclear reactions in the crust of neutron stars. We have performed the first measurements of the total fusion cross sections in the systems (10,14,15)C+(12)C using a new active target-detector system. In the energy region accessible with existing radioactive beams, a good agreement between the experimental and theoretical cross sections is observed. This gives confidence in our ability to calculate fusion cross sections for systems which are outside the range of today's radioactive beam facilities.
RESUMO
Previous explanations for the resonance behavior of (12)C+(12)C fusion at low energies were based on a nonresonant compound-nucleus background and an additional contribution from a series of resonances. This separation into "resonance" and "background" contributions of the cross section is artificial. We propose to explain this phenomenon through the impact on the cross section of the relatively large spacings and the narrow widths of (24)Mg compound levels in the corresponding excitation-energy region.
RESUMO
The structure of (15)C, with an s(1/2) neutron weakly bound to a closed-neutron shell nucleus (14)C, makes it a prime candidate for a one-neutron halo nucleus. We have for the first time studied the cross section for the fusion-fission reaction (15)C+(232)Th at energies in the vicinity of the Coulomb barrier and compared it to the yield of the neighboring (14)C+(232)Th system measured in the same experiment. At sub-barrier energies, an enhancement of the fusion yield by factors of 2-5 was observed for (15)C, while the cross sections for (14)C match the trends measured for (12,13)C.
RESUMO
We have studied the ¹5C(d,p)¹6C reaction in inverse kinematics using the Helical Orbit Spectrometer at Argonne National Laboratory. Prior studies of electromagnetic-transition rates in ¹6C suggested an exotic decoupling of the valence neutrons from the core in that nucleus. Neutron-adding spectroscopic factors give a different probe of the wave functions of the relevant states in ¹6C. Shell-model calculations reproduce both the present transfer data and the previously measured transition rates, suggesting that ¹6C may be described without invoking very exotic phenomena.
RESUMO
A first experiment is reported that makes use of a new kind of spectrometer uniquely suited to the study of reactions with radioactive beams in inverse kinematics, the helical orbit spectrometer, HELIOS. The properties of some low-lying states in the neutron-rich N=8 nucleus 13B were studied with good resolution. From the measured angular distributions of the (d,p) reaction and the relative spectroscopic factors, spin and configuration assignments of the first- and third-excited states of this nucleus can be constrained.
RESUMO
Calcium-41 has been suggested as a new tool for radiometric dating in the range of 10(5) to 10(6) years. The concentration of cosmogenic calcium-41 in natural samples of terrestrial origin has now been determined by high-sensitivity accelerator mass spectrometry after pre-enrichment in calcium-41 with an isotope separator. Ratios of calcium-41 to total calcium between 2 x 10(-14) and 3 x 10(-15) were measured for samples of contemporary bovine bone and from limestone deposits. Some prospects for the use of calcium-41 for dating Middle and Late Pleistocene bone and for other geophysical applications are discussed.
RESUMO
A new measurement of the beta-delayed alpha decay of 16N has been performed using a set of high efficiency ionization chambers. Sources were made by implantation of a 16N beam, yielding very clean alpha spectra down to energies as low as 400 keV. Our data are in good agreement with earlier results. For the S factor S(E1), we obtain a value of 74 +/- 21 keV b. In spite of improvements in the measurement, the error in S(E1) remains relatively large because of the correlations among the fit parameters and the uncertainties inherent to the extrapolation.
RESUMO
The design, material properties, and in vivo degradation characteristics of a new resorbable pin for the reductions of small bony fragments are described. The Polypin, made of 70:30 poly (L, DL-lactide), had an initial bending strength of 155-163 MPa, as measured by a three-point bending test. Ethylene oxide (EO)- and gamma-sterilization did not substantially affect its initial mechanical properties. The initial molecular weight (Mw) of 523,000 to 600,000, however, decreased 60-75% after gamma-sterilization. Incubation of the EO-sterilized pins in 37 degrees C saline solution produced a complete loss of bending strength at 18 months. An accelerated test at 70 degrees C led to a complete loss of strength after only 96 h. Degradation of the gamma-sterilized pin at 70 degrees C was about 30% faster than that of the EO-sterilized pin. Bending strength and molecular weight were unaffected by storage at room temperature for 46 months. The relatively slow strength loss rate of the Polypin potentially extends the application of resorbable devices to slow-healing fractures. The new pin design allows application of light interfragmentary compression, thus reducing the risk of pin loosening, and an X-ray marker is provided.
Assuntos
Materiais Biocompatíveis , Pinos Ortopédicos , Fraturas do Rádio/cirurgia , Biodegradação Ambiental , Desenho de Equipamento , Óxido de Etileno , Raios gama , Humanos , Peso Molecular , Poliésteres , Radiografia , Fraturas do Rádio/diagnóstico por imagem , Esterilização/métodos , Estresse Mecânico , Resistência à TraçãoRESUMO
Soft tissue reactions resulting from biodegradable polylactide implants to bone have not been adequately examined during their 3-year degradation period. An osteotomy was performed on the medial femoral condyle of 36 sheep and secured by either three poly-L-DL-lactide pins (70/30) (Polypin) or three composite pins [10% beta-tricalcium phosphate (beta-TCP) (90/10)]. A histological examination was performed on the synovial membrane and lymph nodes after 3, 18 and 36 months. After 18 months two non-specific, minor reactions of the synovial membrane were observed in the composite pin group. In both groups different reactions of both inguinal lymph nodes were observed. These had no statistical relevance and could not be clearly attributed to the implants. Due to the slow degradation process of biodegradable polylactide implants, there is no clinically relevant inflammation of either joint or lymph nodes. The addition of 10% beta-TCP did not result in any significant enhancement.
Assuntos
Poliésteres , Próteses e Implantes , Membrana Sinovial/metabolismo , Animais , Materiais Biocompatíveis/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Poliésteres/metabolismo , Ovinos , Cicatrização/fisiologiaRESUMO
We report the treatment of six adult patients with displaced fractures of the radial neck by intramedullary reduction and stabilisation. Nine months after operation all the patients had good joint function, little or no pain, complete healing and no significant periarticular calcification. This simple semi-closed procedure may help to avoid resection of the radial head in some cases.
Assuntos
Fixação Intramedular de Fraturas/métodos , Fraturas do Rádio/cirurgia , Adolescente , Adulto , Humanos , Pessoa de Meia-IdadeRESUMO
Foreign-body reaction to polyglycolide (PGA) implants has been described in man. Many animal experiments have verified the mechanical properties of fixation devices made from PGA, but a significant foreign-body reaction has not been described. We studied the effect of PGA rods in 12 sheep with standardised osteochondral fractures of the medial femoral condyle fixed with uncoloured, self-reinforced PGA rods (Biofix). Radiographs were taken at intervals ranging from two weeks to two years, and the sheep were killed at intervals ranging from six to 24 months. All knees were examined histologically. Eleven of the 12 fractures healed radiologically and histologically. Moderate to severe osteolysis was seen at four to six weeks with maximum changes at 12 weeks in ten animals. Six knees showed fistula-like connections between the implant site and the joint space. Three developed synovitis, one with inflammatory changes involving the whole cartilage and one with destruction of the medial condyle. Although in our study osteochondral fractures fixed with PGA rods healed reliably, there were frequent, significant foreign-body reactions. Caution is needed when considering the use of PGA fixation devices in vulnerable regions such as the knee.