Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 68(4): 768-796, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31793693

RESUMO

The human retina contains three types of glial cells: microglia and two types of macroglia, astrocytes and Müller cells. Macroglia provide homeostatic and metabolic support to photoreceptors and neurons required for neuronal activity. The fovea, the site of the sharpest vision which is astrocyte- and microglia-free, contains two populations of Müller glia: cells which form the Müller cell cone in the foveola and z-shaped Müller cells of the foveal walls. Both populations are characterized by morphological and functional differences. Müller cells of the foveola do not support the activity of photoreceptors and neurons, but provide the structural stability of the foveal tissue and improve the light transmission through the tissue to the photoreceptors. This article gives overviews of the glia of the human retina and the structure and function of both Müller cell types in the fovea, and describes the contributions of astrocytes and Müller cells to the ontogenetic development of the fovea.


Assuntos
Astrócitos/citologia , Células Ependimogliais/citologia , Microglia/citologia , Retina/citologia , Astrócitos/fisiologia , Células Ependimogliais/fisiologia , Humanos , Microglia/fisiologia , Retina/fisiologia
2.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485972

RESUMO

Numerous eye diseases are linked to biomechanical dysfunction of the retina. However, the underlying forces are almost impossible to quantify experimentally. Here, we show how biomechanical properties of adult neuronal tissues such as porcine retinae can be investigated under tension in a home-built tissue stretcher composed of nanostructured TiO2 scaffolds coupled to a self-designed force sensor. The employed TiO2 nanotube scaffolds allow for organotypic long-term preservation of adult tissues ex vivo and support strong tissue adhesion without the application of glues, a prerequisite for tissue investigations under tension. In combination with finite element calculations we found that the deformation behavior is highly dependent on the displacement rate which results in Young's moduli of (760-1270) Pa. Image analysis revealed that the elastic regime is characterized by a reversible shear deformation of retinal layers. For larger deformations, tissue destruction and sliding of retinal layers occurred with an equilibration between slip and stick at the interface of ruptured layers, resulting in a constant force during stretching. Since our study demonstrates how porcine eyes collected from slaughterhouses can be employed for ex vivo experiments, our study also offers new perspectives to investigate tissue biomechanics without excessive animal experiments.


Assuntos
Retina/fisiologia , Retina/fisiopatologia , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos , Calibragem , Módulo de Elasticidade , Elasticidade , Análise de Elementos Finitos , Microscopia de Fluorescência , Nanotecnologia , Estresse Mecânico , Suínos , Aderências Teciduais , Titânio/química
3.
Exp Eye Res ; 181: 38-48, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30641045

RESUMO

Mammalian retinal glial (Müller) cells are known to guide light through the inner retina to photoreceptors (Franze et al., 2007; Proc Natl Acad Sci U S A 104:8287-8292). It was shown that Müller cells transmit predominantly red-green and less violet-blue light (Labin et al., 2014; Nat Commun 5:4319). It is not known whether this optical function is reflected in the cone-to-Müller cell ratio. To determine this ratio in the retinas of mammals with different lifestyle, we evaluated the local densities of cones and Müller cells in the retinas of guinea pigs, rabbits, sheep, red deer, roe deer, domestic pigs, and wild boars. Retinal wholemounts were labeled with peanut agglutinin to mark cones and anti-vimentin antibodies to identify Müller cells. Wholemounts of guinea pig and rabbit retinas were also labeled with anti-S-opsin-antibodies. With the exceptions of guinea pig and pig retinas that had cone-to-Müller cell ratios of above one, the local densities of cones and Müller cells in the retinas of the species investigated were roughly equal. Because the proportion of S-cones is usually low (for example, 5.3% of all cones in the dorsal guinea pig retina expressed S-opsin), it is suggested that Müller cells are mainly coupled to M-cones. Exceptions are the ventral peripheries of guinea pig and rabbit retinas which are specialized areas with high S-cone densities. Here, up to 50% of Müller cells may be coupled to S-cones, and 40% of S-cones may be not coupled to Müller cells. Among the species investigated, the density of Müller cells in the central retina was inversely correlated with the axial length of the eyes. It is suggested that (with the exception of specialized S-cone areas) Müller cells support high acuity vision by predominant guidance of red-green light to M-opsin expressing cones.


Assuntos
Células Ependimogliais/citologia , Mamíferos/anatomia & histologia , Retina/citologia , Células Fotorreceptoras Retinianas Cones/citologia , Animais , Contagem de Células , Estilo de Vida
4.
Exp Eye Res ; 167: 110-117, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29242027

RESUMO

Previous studies on the ultrastructure of the primate foveola suggested the presence of an inverted cone-like structure which is formed by 25-35 specialized Müller cells overlying the area of high photoreceptor density. We investigated the ultrastructure of the Müller cells in the foveola of a human and macaque retina. Sections through the posterior poles of an eye of a 40 years-old human donor and an eye of an adult cynomolgus monkey (Macaca fascicularis) were investigated with transmission electron microscopy. The foveola consisted of an inner layer (thickness, 5.5-12 µm) which mainly contained somata (including nuclei) and inner processes of Müller cells; this layer overlaid the central Henle fibers and outer nuclear layer. The inner layer contained numerous watery cysts and thin lamelliform and tubular Müller cell processes which spread along the inner limiting membrane (ILM). The cytoplasm of the outer Müller cell processes became increasingly dispersed and electron-lucent in the course towards the outer limiting membrane. The ILM of the foveola was formed by a very thin basal lamina (thickness, <40 nm) while the basal lamina of the parafovea was thick (0.9-1 µm). The data show that there are various conspicuous features of foveolar Müller cells. The numerous thin Müller cell processes below the ILM may smooth the inner surface of the foveola (to minimize image distortion resulting from varying light refraction angles at an uneven retinal surface), create additional barriers to the vitreous cavity (compensating the thinness of the ILM), and provide mechanical stability to the tissue. The decreasing density of the outer process cytoplasm may support the optical function of the foveola.


Assuntos
Células Ependimogliais/ultraestrutura , Fóvea Central/ultraestrutura , Microscopia Eletrônica de Transmissão , Adulto , Animais , Membrana Basal/ultraestrutura , Humanos , Macaca fascicularis , Masculino
5.
Exp Eye Res ; 173: 91-108, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29763583

RESUMO

In this study, we show the capability of Müller glial cells to transport light through the inverted retina of reptiles, specifically the retina of the spectacled caimans. Thus, confirming that Müller cells of lower vertebrates also improve retinal light transmission. Confocal imaging of freshly isolated retinal wholemounts, that preserved the refractive index landscape of the tissue, indicated that the retina of the spectacled caiman is adapted for vision under dim light conditions. For light transmission experiments, we used a setup with two axially aligned objectives imaging the retina from both sides to project the light onto the inner (vitreal) surface and to detect the transmitted light behind the retina at the receptor layer. Simultaneously, a confocal microscope obtained images of the Müller cells embedded within the vital tissue. Projections of light onto several representative Müller cell trunks within the inner plexiform layer, i.e. (i) trunks with a straight orientation, (ii) trunks which are formed by the inner processes and (iii) trunks which get split into inner processes, were associated with increases in the intensity of the transmitted light. Projections of light onto the periphery of the Müller cell endfeet resulted in a lower intensity of transmitted light. In this way, retinal glial (Müller) cells support dim light vision by improving the signal-to-noise ratio which increases the sensitivity to light. The field of illuminated photoreceptors mainly include rods reflecting the rod dominance of the of tissue. A subpopulation of Müller cells with downstreaming cone cells led to a high-intensity illumination of the cones, while the surrounding rods were illuminated by light of lower intensity. Therefore, Müller cells that lie in front of cones may adapt the intensity of the transmitted light to the different sensitivities of cones and rods, presumably allowing a simultaneous vision with both receptor types under dim light conditions.


Assuntos
Jacarés e Crocodilos/fisiologia , Células Ependimogliais/fisiologia , Luz , Visão Noturna/fisiologia , Retina/fisiologia , Visão Ocular/fisiologia , Animais , Proteínas do Olho/metabolismo , Feminino , Masculino , Microscopia Confocal , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia
6.
Exp Eye Res ; 173: 160-178, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29753728

RESUMO

It has been shown that mammalian retinal glial (Müller) cells act as living optical fibers that guide the light through the retinal tissue to the photoreceptor cells (Agte et al., 2011; Franze et al., 2007). However, for nonmammalian species it is unclear whether Müller cells also improve the transretinal light transmission. Furthermore, for nonmammalian species there is a lack of ultrastructural data of the retinal cells, which, in general, delivers fundamental information of the retinal function, i.e. the vision of the species. A detailed study of the cellular ultrastructure provides a basic approach of the research. Thus, the aim of the present study was to investigate the retina of the spectacled caimans at electron and light microscopical levels to describe the structural features. For electron microscopy, we used a superfast microwave fixation procedure in order to achieve more precise ultrastructural information than common fixation techniques. As result, our detailed ultrastructural study of all retinal parts shows structural features which strongly indicate that the caiman retina is adapted to dim light and night vision. Various structural characteristics of Müller cells suppose that the Müller cell may increase the light intensity along the path of light through the neuroretina and, thus, increase the sensitivity of the scotopic vision of spectacled caimans. Müller cells traverse the whole thickness of the neuroretina and thus may guide the light from the inner retinal surface to the photoreceptor cell perikarya and the Müller cell microvilli between the photoreceptor segments. Thick Müller cell trunks/processes traverse the layers which contain light-scattering structures, i.e., nerve fibers and synapses. Large Müller cell somata run through the inner nuclear layer and contain flattened, elongated Müller cell nuclei which are arranged along the light path and, thus, may reduce the loss of the light intensity along the retinal light path. The oblique arrangement of many Müller cell trunks/processes in the inner plexiform layer and the large Müller cell somata in the inner nuclear layer may suggest that light guidance through Müller cells increases the visual sensitivity. Furthermore, an adaptation of the caiman retina to low light levels is strongly supported by detailed ultrastructural data of other retinal parts, e.g. by (i) the presence of a guanine-based retinal tapetum, (ii) the rod dominance of the retina, (iii) the presence of photoreceptor cell nuclei, which penetrate the outer limiting membrane, (iv) the relatively low densities of photoreceptor and neuronal cells which is compensated by (v) the presence of rods with long and thick outer segments, that may increase the probability of photon absorption. According to a cell number analysis, the central and temporal areas of the dorsal tapetal retina, which supports downward prey detection in darker water, are the sites of the highest diurnal contrast/color vision, i.e. cone vision and of the highest retinal light sensitivity, i.e. rod vision.


Assuntos
Adaptação Ocular/fisiologia , Jacarés e Crocodilos , Visão Noturna/fisiologia , Retina/ultraestrutura , Animais , Contagem de Células , Feminino , Masculino , Microscopia Eletrônica , Células Fotorreceptoras de Vertebrados/ultraestrutura , Retina/fisiologia , Epitélio Pigmentado da Retina/ultraestrutura
7.
Glia ; 65(1): 62-74, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27706854

RESUMO

Tractional forces or mechanical stimulation are known to induce calcium responses in retinal glial cells. The aim of the study was to determine the characteristics of calcium responses in Müller glial cells of the avascular guinea pig retina induced by focal mechanical stimulation. Freshly isolated retinal wholemounts were loaded with Mitotracker Deep Red (to fill Müller cells) and the calcium-sensitive dye Fluo-4/AM. The inner retinal surface was mechanically stimulated with a micropipette tip for 10 ms. Stimulation induced two different cytosolic calcium responses in Müller cells with different kinetics in dependence on the distance from the stimulation site. Müller cells near the stimulation site displayed an immediate and long-lasting calcium response with high amplitude. This response was mediated by calcium influx from the extracellular space likely triggered by activation of ATP-insensitive P2 receptors. More distant Müller cells displayed, with a delay of 2.4 s, transient calcium responses which propagated laterally in a wave-like fashion. Propagating calcium waves were induced by a calcium-independent release of ATP from Müller cells near the stimulation site, and were mediated by a release of calcium from internal stores triggered by ATP, acting in part at P2Y1 receptors. The data suggest that mechanically stimulated Müller cells of the guinea pig retina release ATP which induces a propagating calcium wave in surrounding Müller cells. Propagating calcium waves may be implicated in the spatial regulation of the neuronal activity and homeostatic glial functions, and may transmit gliosis-inducing signals across the retina. Mechanical stimulation of guinea pig Müller cells induces two calcium responses: an immediate response around the stimulation site and propagating calcium waves. Both responses are differentially mediated by activation of purinergic receptors. GLIA 2016 GLIA 2017;65:62-74.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Neuroglia/metabolismo , Retina/citologia , Retina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Gliose/metabolismo , Cobaias , Camundongos , Receptores Purinérgicos/metabolismo
8.
Glia ; 65(4): 533-568, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27767232

RESUMO

Müller cells are the dominant macroglial cells in the retina of all vertebrates. They fulfill a variety of functions important for retinal physiology, among them spatial buffering of K+ ions and uptake of glutamate and other neurotransmitters. To this end, Müller cells express inwardly rectifying K+ channels and electrogenic glutamate transporters. Moreover, a lot of voltage- and ligand-gated ion channels, aquaporin water channels, and electrogenic transporters are expressed in Müller cells, some of them in a species-specific manner. For example, voltage-dependent Na+ channels are found exclusively in some but not all mammalian species. Whereas a lot of data exist from amphibians and mammals, the results from other vertebrates are sparse. It is the aim of this review to present a survey on Müller cell electrophysiology covering all classes of vertebrates. The focus is on functional studies, mainly performed using the whole-cell patch-clamp technique. However, data about the expression of membrane channels and transporters from immunohistochemistry are also included. Possible functional roles of membrane channels and transporters are discussed. Obviously, electrophysiological properties involved in the main functions of Müller cells developed early in vertebrate evolution. GLIA 2017;65:533-568.


Assuntos
Células Ependimogliais/fisiologia , Potenciais da Membrana/fisiologia , Fisiologia Comparada , Retina/citologia , Animais , Células Ependimogliais/classificação , Humanos , Vertebrados/anatomia & histologia
9.
Cell Physiol Biochem ; 44(4): 1411-1424, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29186716

RESUMO

Background/ Aims: This study was performed to reveal signaling pathways exploited by pigment epithelium-derived factor (PEDF) derived from retinal (glial) Müller cells to protect retinal ganglion cells (RGCs) from cell death. METHODS: The survival of RGCs was determined in the presence of conditioned culture media (MCM) from or in co-cultures with Müller cells. The significance of PEDF-induced STAT3 activation was evaluated in viability assays and using Western blotting analyses and siRNA-transfected cells. RESULTS: Secreted mediators of Müller cells increased survival of RGCs under normoxia or hypoxia to a similar degree as of PEDF- or IL-6-exposed cells. PEDF and MCM induced an increased STAT3 activation in RGCs and R28 cells, and neutralization of PEDF in MCM attenuated STAT3 activation. Inhibition of STAT3 reduced PEDF-promoted survival of RGCs. Similar to IL-6, PEDF induced STAT3 activation, acting in a dose-dependent manner via the PEDF receptor (PEDF-R) encoded by the PNPLA2 gene. Ablation of PEDF-R attenuated MCM-induced STAT3 activation and compromised the viability of PEDF-exposed R28 cells. CONCLUSIONS: Müller cells are an important source of PEDF, which promotes RGC survival through STAT3 activation and, at least in part, via PEDF-R. Enhancing the secretory function of Müller cells may be useful to promote RGC survival in retinal neurodegenerative diseases.


Assuntos
Células Ependimogliais/metabolismo , Proteínas do Olho/metabolismo , Fatores de Crescimento Neural/metabolismo , Fator de Transcrição STAT3/metabolismo , Serpinas/metabolismo , Animais , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Óxidos S-Cíclicos/farmacologia , Células Ependimogliais/citologia , Proteínas do Olho/antagonistas & inibidores , Proteínas do Olho/genética , Proteínas do Olho/farmacologia , Interleucina-6/farmacologia , Lipase/antagonistas & inibidores , Lipase/genética , Lipase/metabolismo , Camundongos , Fatores de Crescimento Neural/antagonistas & inibidores , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/farmacologia , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Receptores de Neuropeptídeos/metabolismo , Células Ganglionares da Retina/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Serpinas/genética , Serpinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
10.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28724733

RESUMO

Bilaterians usually possess a central nervous system, composed of neurons and supportive cells called glial cells. Whereas neuronal cells are highly comparable in all these animals, glial cells apparently differ, and in deuterostomes, radial glial cells are found. These particular secretory glial cells may represent the archetype of all (macro) glial cells and have not been reported from protostomes so far. This has caused controversial discussions of whether glial cells represent a homologous bilaterian characteristic or whether they (and thus, centralized nervous systems) evolved convergently in the two main clades of bilaterians. By using histology, transmission electron microscopy, immunolabelling and whole-mount in situ hybridization, we show here that protostomes also possess radial glia-like cells, which are very likely to be homologous to those of deuterostomes. Moreover, our antibody staining indicates that the secretory character of radial glial cells is maintained throughout their various evolutionary adaptations. This implies an early evolution of radial glial cells in the last common ancestor of Protostomia and Deuterostomia. Furthermore, it suggests that an intraepidermal nervous system-composed of sensory cells, neurons and radial glial cells-was probably the plesiomorphic condition in the bilaterian ancestor.


Assuntos
Evolução Biológica , Sistema Nervoso Central/citologia , Células Ependimogliais/citologia , Neuroglia/citologia , Animais , Neurônios
11.
Brain Behav Evol ; 89(2): 84-103, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28437785

RESUMO

Elephants are precocial mammals that are relatively mature as newborns and mobile shortly after birth. To determine whether the retina of newborn elephants is capable of supporting the mobility of elephant calves, we compared the retinal structures of 2 newborn elephants (1 African and 1 Asian) and 2 adult animals of both species by immunohistochemical and morphometric methods. For the first time, we present here a comprehensive qualitative and quantitative characterization of the cellular composition of the newborn and the adult retinas of 2 elephant species. We found that the retina of elephants is relatively mature at birth. All retinal layers were well discernible, and various retinal cell types were detected in the newborns, including Müller glial cells (expressing glutamine synthetase and cellular retinal binding protein; CRALBP), cone photoreceptors (expressing S-opsin or M/L-opsin), protein kinase Cα-expressing bipolar cells, tyrosine hydroxylase-, choline acetyltransferase (ChAT)-, calbindin-, and calretinin-expressing amacrine cells, and calbindin-expressing horizontal cells. The retina of newborn elephants contains discrete horizontal cells which coexpress ChAT, calbindin, and calretinin. While the overall structure of the retina is very similar between newborn and adult elephants, various parameters change after birth. The postnatal thickening of the retinal ganglion cell axons and the increase in ganglion cell soma size are explained by the increase in body size after birth, and the decreases in the densities of neuronal and glial cells are explained by the postnatal expansion of the retinal surface area. The expression of glutamine synthetase and CRALBP in the Müller cells of newborn elephants suggests that the cells are already capable of supporting the activities of photoreceptors and neurons. As a peculiarity, the elephant retina contains both normally located and displaced giant ganglion cells, with single cells reaching a diameter of more than 50 µm in adults and therefore being almost in the range of giant retinal ganglion cells found in aquatic mammals. Some of these ganglion cells are displaced into the inner nuclear layer, a unique feature of terrestrial mammals. For the first time, we describe here the occurrence of many bistratified rod bipolar cells in the elephant retina. These bistratified bipolar cells may improve nocturnal contrast perception in elephants given their arrhythmic lifestyle.


Assuntos
Elefantes/anatomia & histologia , Neuroglia , Neurônios , Retina/citologia , Retina/crescimento & desenvolvimento , Vias Visuais/anatomia & histologia , Fatores Etários , Animais , Animais Recém-Nascidos , Calbindina 2/metabolismo , Calbindinas/metabolismo , Cerebelo/crescimento & desenvolvimento , Colina O-Acetiltransferase/metabolismo , Olho/anatomia & histologia , Feminino , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Opsinas/metabolismo , Nervo Óptico/anatomia & histologia , Nervo Óptico/crescimento & desenvolvimento , Especificidade da Espécie , Tirosina 3-Mono-Oxigenase/metabolismo
12.
FASEB J ; 29(12): 4815-28, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26251181

RESUMO

Vimentin (Vim) and glial fibrillary acidic protein (GFAP) are important components of the intermediate filament (IF) (or nanofilament) system of astroglial cells. We conducted full-field electroretinogram (ERG) recordings and found that whereas photoreceptor responses (a-wave) were normal in uninjured GFAP(-/-)Vim(-/-) mice, b-wave amplitudes were increased. Moreover, we found that Kir (inward rectifier K(+)) channel protein expression was reduced in the retinas of GFAP(-/-)Vim(-/-) mice and that Kir-mediated current amplitudes were lower in Müller glial cells isolated from these mice. Studies have shown that the IF system, in addition, is involved in the retinal response to injury and that attenuated Müller cell reactivity and reduced photoreceptor cell loss are observed in IF-deficient mice after experimental retinal detachment. We investigated whether the lack of IF proteins would affect cell survival in a retinal ischemia-reperfusion model. We found that although cell loss was induced in both genotypes, the number of surviving cells in the inner retina was lower in IF-deficient mice. Our findings thus show that the inability to produce GFAP and Vim affects normal retinal physiology and that the effect of IF deficiency on retinal cell survival differs, depending on the underlying pathologic condition.


Assuntos
Proteína Glial Fibrilar Ácida/genética , Retina/fisiopatologia , Vimentina/genética , Animais , Sobrevivência Celular , Eletrorretinografia , Isquemia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Vasos Retinianos/fisiopatologia
13.
Neurochem Res ; 41(10): 2598-2606, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27278757

RESUMO

Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Here, we show that endothelin-1 (ET-1) dose-dependently inhibits the hypoosmotic swelling of Müller cells in freshly isolated retinal slices of control and diabetic rats, with a maximal inhibition at 100 nM. Osmotic Müller cell swelling was also inhibited by ET-2. The effect of ET-1 was mediated by activation of ETA and ETB receptors resulting in transactivation of metabotropic glutamate receptors, purinergic P2Y1, and adenosine A1 receptors. ET-1 (but not ET-2) also inhibited the osmotic swelling of bipolar cells in retinal slices, but failed to inhibit the swelling of freshly isolated bipolar cells. The inhibitory effect of ET-1 on the bipolar cell swelling in retinal slices was abrogated by inhibitors of the FGF receptor kinase (PD173074) and of TGF-ß1 superfamily activin receptor-like kinase receptors (SB431542), respectively. Both Müller and bipolar cells displayed immunoreactivities of ETA and ETB receptor proteins. The data may suggest that neuroprotective effects of ETs in the retina are in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. ET-1 acts directly on Müller cells, while the inhibitory effect of ET-1 on bipolar cell swelling is indirectly mediated, via stimulation of the release of growth factors like bFGF and TGF-ß1 from Müller cells.


Assuntos
Endotelinas/farmacologia , Células Ependimogliais/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Osmose/efeitos dos fármacos , Retina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Tamanho Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Células Ependimogliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neuroglia/metabolismo , Pressão Osmótica/efeitos dos fármacos , Ratos Long-Evans , Ratos Sprague-Dawley , Retina/metabolismo
14.
Neurochem Res ; 41(7): 1784-96, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27038933

RESUMO

Retinal glial (Müller) cells possess an endogenous purinergic signal transduction cascade which normally prevents cellular swelling in osmotic stress. The cascade can be activated by osmotic or glutamate receptor-dependent ATP release. We determined whether activation of this cascade is altered in Müller cells of transgenic rats that suffer from a slow photoreceptor degeneration due to the expression of a truncated human cilia gene polycystin-2 (CMV-PKD21/703 HA). Age-matched Sprague-Dawley rats served as control. Retinal slices were superfused with a hypoosmotic solution (60 % osmolarity). Müller cells in retinas of PKD21/703 rats swelled immediately in hypoosmotic stress; this was not observed in control retinas. Pharmacological blockade of P2Y1 or adenosine A1 receptors induced osmotic swelling of Müller cells from control rats. The swelling induced by the P2Y1 receptor antagonist was mediated by induction of oxidative-nitrosative stress, mitochondrial dysfunction, production of inflammatory lipid mediators, and a sodium influx from the extracellular space. Exogenous VEGF or glutamate prevented the hypoosmotic swelling of Müller cells from PKD21/703 rats; this effect was mediated by activation of the purinergic signaling cascade. In neuroretinas of PKD21/703 rats, the gene expression levels of P2Y1 and A1 receptors, pannexin-1, connexin 45, NTPDases 1 and 2, and various subtypes of nucleoside transporters are elevated compared to control. The data may suggest that the osmotic swelling of Müller cells from PKD21/703 rats is caused by an abrogation of the osmotic ATP release while the glutamate-induced ATP release is functional. In the normal retina, ATP release and autocrine P2Y1 receptor activation serve to inhibit the induction of oxidative-nitrosative stress, mitochondrial dysfunction, and production of inflammatory lipid mediators, which otherwise will induce a sodium influx and cytotoxic Müller cell swelling under anisoosmotic conditions. Purinergic receptors may represent a target for the protection of retinal glial cells from mitochondrial oxidative stress.


Assuntos
Tamanho Celular , Células Ependimogliais/metabolismo , Receptor A1 de Adenosina/fisiologia , Receptores Purinérgicos P2Y1/fisiologia , Retina/metabolismo , Canais de Cátion TRPP/biossíntese , Animais , Células Ependimogliais/patologia , Regulação da Expressão Gênica , Humanos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Retina/patologia , Canais de Cátion TRPP/genética
15.
Vis Neurosci ; 33: E013, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-28359347

RESUMO

Retinal Müller glial cells have been shown to undergo reactive gliosis in a variety of retinal diseases. Upregulation of glial fibrillary acidic protein (GFAP) is a hallmark of Müller cell activation. Reactive gliosis after retinal detachment or ischemia/reperfusion is characterized by hypertrophy and downregulation of inwardly rectifying K+ (Kir) currents. However, this kind of physiological alteration could not be detected in slowly progressing retinal degenerations. The photoreceptor toxin N-methyl-N-nitrosourea (MNU) leads to the rapid loss of cells in the outer nuclear layer and subsequent Müller cell activation. Here, we investigated whether Müller cells from MNU-treated mice exhibit reactive gliosis. We found that Müller cells showed increased GFAP expression and increased membrane capacitance, indicating hypertrophy. Membrane potential and Kir channel-mediated K+ currents were not significantly altered whereas Kir4.1 mRNA expression and Kir-mediated inward current densities were markedly decreased. This suggests that MNU-induced Müller cell gliosis is characterized by plasma membrane increase without alteration in the membrane content of Kir channels. Taken together, our findings show that Müller cells of MNU-treated mice are reactive and respond with a form of gliosis which is characterized by cellular hypertrophy but no changes in Kir current amplitudes.


Assuntos
Alquilantes/toxicidade , Células Ependimogliais/patologia , Gliose/patologia , Metilnitrosoureia/toxicidade , Degeneração Retiniana/patologia , Animais , Proteínas de Transporte/metabolismo , Células Ependimogliais/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Imuno-Histoquímica , Injeções Intraperitoneais , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/metabolismo
16.
Soft Matter ; 12(14): 3431-41, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26947970

RESUMO

Development of neuronal tissue, such as folding of the brain, and formation of the fovea centralis in the human retina are intimately connected with the mechanical properties of the underlying cells and the extracellular matrix. In particular for neuronal tissue as complex as the vertebrate retina, mechanical properties are still a matter of debate due to their relation to numerous diseases as well as surgery, where the tension of the retina can result in tissue detachment during cutting. However, measuring the elasticity of adult retina wholemounts is difficult and until now only the mechanical properties at the surface have been characterized with micrometer resolution. Many processes, however, such as pathological changes prone to cause tissue rupture and detachment, respectively, are reflected in variations of retina elasticity at smaller length scales at the protein level. In the present work we demonstrate that freely oscillating cantilevers composed of nanostructured TiO2 scaffolds can be employed to study the frequency-dependent mechanical response of adult mammalian retina explants at the nanoscale. Constituting highly versatile scaffolds with strong tissue attachment for long-term organotypic culture atop, these scaffolds perform damped vibrations as fingerprints of the mechanical tissue properties that are derived using finite element calculations. Since the tissue adheres to the nanostructures via constitutive proteins on the photoreceptor side of the retina, the latter are stretched and compressed during vibration of the underlying scaffold. Probing mechanical response of individual proteins within the tissue, the proposed mechanical spectroscopy approach opens the way for studying tissue mechanics, diseases and the effect of drugs at the protein level.


Assuntos
Nanotubos/química , Retina/citologia , Alicerces Teciduais/química , Animais , Técnicas de Cultura/métodos , Elasticidade , Cobaias , Permeabilidade , Retina/metabolismo , Análise Espectral/métodos , Titânio , Vibração
17.
Graefes Arch Clin Exp Ophthalmol ; 254(3): 497-503, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26743749

RESUMO

BACKGROUND: Osmotic swelling of neurons and glial cells contributes to retinal edema and neurodegeneration. BDNF, a major neuroprotectant in the retina, was shown to inhibit osmotic swelling of glial (Müller) and bipolar cells in the rat retina; the effect of BDNF on the bipolar cell swelling is mediated by inducing a release of neuroprotective cytokines from Müller cells (Berk et al., Neuroscience 295:175-186, 2015). We determined whether BDNF-mediated cell volume regulation was altered after transient retinal ischemia. METHODS: Retinal slices from the eyes of rats that underwent a 1-h pressure-induced retinal ischemia and from control eyes were superfused with a hypoosmotic solution. RESULTS: Exogenous BDNF prevented osmotic swelling of Müller cells in both control and post-ischemic retinal slices. BDNF also prevented osmotic swelling of bipolar cells in the control retina, but not in the ischemic retina. On the other hand, exogenous bFGF prevented the swelling of both Müller and bipolar cells in the ischemic retina. Freshly isolated Müller cells of control retinas displayed immunoreactivity of truncated but not full-length TrkB. In contrast, Müller cells of post-ischemic retinas displayed immunoreactivity of both TrkB isoforms. Bipolar cells isolated from control and post-ischemic retinas were immunolabeled for both TrkB isoforms. CONCLUSIONS: The data may suggest that the ischemic abrogation of the BDNF effect in bipolar cells is related to altered BDNF receptor expression in Müller cells. Glial upregulation of full-length TrkB may support the survival of Müller cells in the ischemic retina, but may impair the BDNF-induced release of neuroprotective cytokines such as bFGF from Müller cells.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Tamanho Celular/efeitos dos fármacos , Células Ependimogliais/metabolismo , Isquemia/metabolismo , Receptor trkB/metabolismo , Células Bipolares da Retina/metabolismo , Vasos Retinianos/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Ependimogliais/patologia , Feminino , Imuno-Histoquímica , Isquemia/patologia , Masculino , Pressão Osmótica , Ratos , Ratos Long-Evans , Células Bipolares da Retina/patologia , Vasos Retinianos/patologia , Transdução de Sinais
18.
Graefes Arch Clin Exp Ophthalmol ; 254(8): 1567-1577, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27270346

RESUMO

PURPOSE: We aimed to determine the ultrastructural changes of collagen fibrils and cells in the rabbit sclera after scleral crosslinking using riboflavin and blue light of different intensities. Scleral crosslinking is known to increase scleral stiffness and may inhibit the axial elongation of progressive myopic eyes. METHODS: The equatorial parts of the sclera of one eye of six adult albino rabbits were treated with topical riboflavin solution (0.5 %) followed by irradiation with blue light (200, 400, 650 mW/cm(2)) for 20 min. After 3 weeks, the ultrastructure of scleral cells and the abundance of small- (10-100 nm) and large-diameter (>100 nm) collagen fibrils in fibril bundles of different scleral layers were examined with electron microscopy. RESULTS: In the scleral stroma of control eyes, the thickness of collagen fibrils showed a bimodal distribution. The abundance of small-diameter collagen fibrils decreased from the inner towards the outer sclera, while the amount of large-diameter fibrils and the scleral collagen content did not differ between different stroma layers. Treatment with riboflavin and blue light at 200 mW/cm(2) did not induce ultrastructural changes of cells and collagen fibrils in the scleral stroma. Treatment with blue light of higher intensities induced scleral cell activation in a scleral layer-dependent manner. In addition, outer scleral layers contained phagocytes that engulfed collagen fibrils and erythrocytes. Blue light of the highest intensity induced a reduction of the scleral collagen content, a decreased abundance of large-diameter collagen fibrils, and an increased amount of small-diameter fibrils in the whole scleral stroma. CONCLUSIONS: The data indicate that in rabbits, scleral crosslinking with riboflavin and blue light of 200 mW/cm(2) for 20 min is relatively safe and does not induce ultrastructural alterations of scleral cells and of the collagen composition of the scleral stroma. Irradiation with blue light of intensities between 200 and 400 mW/cm(2) induces scleral cell activation, which may contribute to scleral scarring and stiffening. Higher intensities cause scleritis.


Assuntos
Colágeno/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Luz , Miopia/terapia , Riboflavina/farmacologia , Esclera/ultraestrutura , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Microscopia Eletrônica , Miopia/fisiopatologia , Fármacos Fotossensibilizantes/farmacologia , Coelhos , Esclera/efeitos dos fármacos , Esclera/fisiopatologia
19.
Graefes Arch Clin Exp Ophthalmol ; 254(1): 109-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26597112

RESUMO

BACKGROUND: Scleral cross-linking (SXL) by riboflavin and light application has been introduced as a possible treatment to increase scleral tissue stiffness and to inhibit excessive axial elongation of highly myopic eyes. We evaluated an ocular tissue damage threshold for blue light irradiation, and used SXL treatment to induce eye growth inhibition. METHODS: The sclera of 3-week-old rabbits (39 pigmented and 15 albino rabbits) were treated with different blue light intensities (450 ± 50 nm) and riboflavin. Alterations and a damage threshold were detected in ocular tissues by means of light microscopy and immunohistochemistry. The influence of SXL on the eye growth was examined in 21 young rabbits and was measured by using A-scan ultrasonography, micrometer caliper, and for selected eyes additionally by MR imaging. RESULTS: Light microscopic examinations demonstrated degenerative changes in ocular tissue after irradiation with blue light intensities above 400 mW/cm(2) (with and without riboflavin application). Therefore, that light intensity was defined as the damage threshold. Tissue alteration in retina, choroid, and sclera and activation of retinal microglia cells and Müller cells could be earlier observed at blue light intensities of 150 and 200 mW/cm(2). Albino rabbits were less sensitive to this SXL treatment. A significant reduction of the eye growth could be detected by SXL treatment with the minimal efficient blue light intensity of 15 mW/cm(2) and maintained stable for 24 weeks. CONCLUSIONS: SXL with riboflavin and blue light intensities below a defined damage threshold can induce a long lasting growth inhibitory effect on young rabbit eyes. Therefore, SXL might be a realistic approach to inhibit eye elongation in highly myopic eyes.


Assuntos
Reagentes de Ligações Cruzadas , Olho/crescimento & desenvolvimento , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Riboflavina/farmacologia , Esclera/efeitos dos fármacos , Esclera/metabolismo , Animais , Comprimento Axial do Olho/efeitos dos fármacos , Colágeno/metabolismo , Olho/diagnóstico por imagem , Imuno-Histoquímica , Luz , Imageamento por Ressonância Magnética , Coelhos , Limiar Sensorial , Ultrassonografia
20.
Mol Vis ; 21: 360-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25878490

RESUMO

PURPOSE: High intake of dietary salt increases extracellular osmolarity, which results in hypertension, a risk factor of neovascular age-related macular degeneration. Neovascular retinal diseases are associated with edema. Various factors and channels, including vascular endothelial growth factor (VEGF) and aquaporins (AQPs), influence neovascularization and the development of edema. Therefore, we determined whether extracellular hyperosmolarity alters the expression of VEGF and AQPs in cultured human retinal pigment epithelial (RPE) cells. METHODS: Human RPE cells obtained within 48 h of donor death were prepared and cultured. Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Alterations in gene expression and protein secretion were determined with real-time RT-PCR and ELISA, respectively. The levels of signaling proteins and nuclear factor of activated T cell 5 (NFAT5) were determined by western blotting. DNA binding of NFAT5 was determined with EMSA. NFAT5 was knocked down with siRNA. RESULTS: Extracellular hyperosmolarity stimulated VEGF gene transcription and the secretion of VEGF protein. Hyperosmolarity also increased the gene expression of AQP5 and AQP8, induced the phosphorylation of p38 MAPK and ERK1/2, increased the expression of HIF-1α and NFAT5, and induced the DNA binding of NFAT5. The hyperosmotic expression of VEGF was dependent on the activation of p38 MAPK, ERK1/2, JNK, PI3K, HIF-1, and NFAT5. The hyperosmotic induction of AQP5 was in part dependent on the activation of p38 MAPK, ERK1/2, NF-κB, and NFAT5. Triamcinolone acetonide inhibited the hyperosmotic expression of VEGF but not AQP5. The expression of AQP5 was decreased by hypoosmolarity, serum, and hypoxia. CONCLUSIONS: Hyperosmolarity induces the gene transcription of AQP5, AQP8, and VEGF, as well as the secretion of VEGF from RPE cells. The data suggest that high salt intake resulting in osmotic stress may aggravate neovascular retinal diseases and edema via the stimulation of VEGF production in RPE. The downregulation of AQP5 under hypoxic conditions may prevent the resolution of edema.


Assuntos
Aquaporina 5/metabolismo , Células Epiteliais/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Cloreto de Sódio/farmacologia , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Aquaporina 5/agonistas , Aquaporina 5/genética , Aquaporinas/genética , Aquaporinas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Concentração Osmolar , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Transdução de Sinais , Sacarose/farmacologia , Fatores de Transcrição/agonistas , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica , Triancinolona Acetonida/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA