Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(27): e2400497121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917010

RESUMO

S100A1, a small homodimeric EF-hand Ca2+-binding protein (~21 kDa), plays an important regulatory role in Ca2+ signaling pathways involved in various biological functions including Ca2+ cycling and contractile performance in skeletal and cardiac myocytes. One key target of the S100A1 interactome is the ryanodine receptor (RyR), a huge homotetrameric Ca2+ release channel (~2.3 MDa) of the sarcoplasmic reticulum. Here, we report cryoelectron microscopy structures of S100A1 bound to RyR1, the skeletal muscle isoform, in absence and presence of Ca2+. Ca2+-free apo-S100A1 binds beneath the bridging solenoid (BSol) and forms contacts with the junctional solenoid and the shell-core linker of RyR1. Upon Ca2+-binding, S100A1 undergoes a conformational change resulting in the exposure of the hydrophobic pocket known to serve as a major interaction site of S100A1. Through interactions of the hydrophobic pocket with RyR1, Ca2+-bound S100A1 intrudes deeper into the RyR1 structure beneath BSol than the apo-form and induces sideways motions of the C-terminal BSol region toward the adjacent RyR1 protomer resulting in tighter interprotomer contacts. Interestingly, the second hydrophobic pocket of the S100A1-dimer is largely exposed at the hydrophilic surface making it prone to interactions with the local environment, suggesting that S100A1 could be involved in forming larger heterocomplexes of RyRs with other protein partners. Since S100A1 interactions stabilizing BSol are implicated in the regulation of RyR-mediated Ca2+ release, the characterization of the S100A1 binding site conserved between RyR isoforms may provide the structural basis for the development of therapeutic strategies regarding treatments of RyR-related disorders.


Assuntos
Cálcio , Microscopia Crioeletrônica , Canal de Liberação de Cálcio do Receptor de Rianodina , Proteínas S100 , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Proteínas S100/metabolismo , Proteínas S100/química , Cálcio/metabolismo , Animais , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Conformação Proteica , Humanos
2.
Hum Mol Genet ; 29(24): 3919-3934, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33388782

RESUMO

Mutations in the lamin A/C gene (LMNA), which encodes A-type lamins, cause several diseases called laminopathies, the most common of which is dilated cardiomyopathy with muscular dystrophy. The role of Ca2+ regulation in these diseases remain poorly understood. We now show biochemical remodeling of the ryanodine receptor (RyR)/intracellular Ca2+ release channel in heart samples from human subjects with LMNA mutations, including protein kinase A-catalyzed phosphorylation, oxidation and depletion of the stabilizing subunit calstabin. In the LmnaH222P/H222P murine model of Emery-Dreifuss muscular dystrophy caused by LMNA mutation, we demonstrate an age-dependent biochemical remodeling of RyR2 in the heart and RyR1 in skeletal muscle. This RyR remodeling is associated with heart and skeletal muscle dysfunction. Defective heart and muscle function are ameliorated by treatment with a novel Rycal small molecule drug (S107) that fixes 'leaky' RyRs. SMAD3 phosphorylation is increased in hearts and diaphragms of LmnaH222P/H222P mice, which enhances NADPH oxidase binding to RyR channels, contributing to their oxidation. There is also increased generalized protein oxidation, increased calcium/calmodulin-dependent protein kinase II-catalyzed phosphorylation of RyRs and increased protein kinase A activity in these tissues. Our data show that RyR remodeling plays a role in cardiomyopathy and skeletal muscle dysfunction caused by LMNA mutation and identify these Ca2+ channels as a potential therapeutic target.


Assuntos
Cardiomiopatias/patologia , Modelos Animais de Doenças , Coração/fisiopatologia , Lamina Tipo A/genética , Distrofias Musculares/patologia , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sinalização do Cálcio , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Feminino , Homeostase , Humanos , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/etiologia , Distrofias Musculares/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
3.
Acta Neuropathol ; 146(2): 301-318, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37335342

RESUMO

Essential Tremor (ET) is a prevalent neurological disease characterized by an 8-10 Hz action tremor. Molecular mechanisms of ET remain poorly understood. Clinical data suggest the importance of the cerebellum in disease pathophysiology, and pathological studies indicate Purkinje Cells (PCs) incur damage. Our recent cerebellar cortex and PC-specific transcriptome studies identified alterations in calcium (Ca2+) signaling pathways that included ryanodine receptor type 1 (RyR1) in ET. RyR1 is an intracellular Ca2+ release channel located on the Endoplasmic Reticulum (ER), and in cerebellum is predominantly expressed in PCs. Under stress conditions, RyR1 undergoes several post-translational modifications (protein kinase A [PKA] phosphorylation, oxidation, nitrosylation), coupled with depletion of the channel-stabilizing binding partner calstabin1, which collectively characterize a "leaky channel" biochemical signature. In this study, we found markedly increased PKA phosphorylation at the RyR1-S2844 site, increased RyR1 oxidation and nitrosylation, and calstabin1 depletion from the RyR1 complex in postmortem ET cerebellum. Decreased calstabin1-RyR1-binding affinity correlated with loss of PCs and climbing fiber-PC synapses in ET. This 'leaky' RyR1 signature was not seen in control or Parkinson's disease cerebellum. Microsomes from postmortem cerebellum demonstrated excessive ER Ca2+ leak in ET vs. controls, attenuated by channel stabilization. We further studied the role of RyR1 in tremor using a mouse model harboring a RyR1 point mutation that mimics constitutive site-specific PKA phosphorylation (RyR1-S2844D). RyR1-S2844D homozygous mice develop a 10 Hz action tremor and robust abnormal oscillatory activity in cerebellar physiological recordings. Intra-cerebellar microinfusion of RyR1 agonist or antagonist, respectively, increased or decreased tremor amplitude in RyR1-S2844D mice, supporting a direct role of cerebellar RyR1 leakiness for tremor generation. Treating RyR1-S2844D mice with a novel RyR1 channel-stabilizing compound, Rycal, effectively dampened cerebellar oscillatory activity, suppressed tremor, and normalized cerebellar RyR1-calstabin1 binding. These data collectively support that stress-associated ER Ca2+ leak via RyR1 may contribute to tremor pathophysiology.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Tremor/metabolismo , Cerebelo/metabolismo , Retículo Endoplasmático/metabolismo , Músculo Esquelético/metabolismo
4.
Nature ; 517(7532): 44-9, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25470061

RESUMO

Ryanodine receptors (RyRs) mediate the rapid release of calcium (Ca(2+)) from intracellular stores into the cytosol, which is essential for numerous cellular functions including excitation-contraction coupling in muscle. Lack of sufficient structural detail has impeded understanding of RyR gating and regulation. Here we report the closed-state structure of the 2.3-megadalton complex of the rabbit skeletal muscle type 1 RyR (RyR1), solved by single-particle electron cryomicroscopy at an overall resolution of 4.8 Å. We fitted a polyalanine-level model to all 3,757 ordered residues in each protomer, defining the transmembrane pore in unprecedented detail and placing all cytosolic domains as tertiary folds. The cytosolic assembly is built on an extended α-solenoid scaffold connecting key regulatory domains to the pore. The RyR1 pore architecture places it in the six-transmembrane ion channel superfamily. A unique domain inserted between the second and third transmembrane helices interacts intimately with paired EF-hands originating from the α-solenoid scaffold, suggesting a mechanism for channel gating by Ca(2+).


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/ultraestrutura , Animais , Cálcio/deficiência , Cálcio/metabolismo , Cálcio/farmacologia , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Citosol/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Músculo Esquelético/química , Estrutura Terciária de Proteína , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo
5.
Crit Care Med ; 48(12): e1300-e1305, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33009102

RESUMO

OBJECTIVES: Mechanical ventilation is associated with primary diaphragmatic dysfunction, also termed ventilator-induced diaphragmatic dysfunction. Studies evaluating diaphragmatic function recovery after extubation are lacking. We evaluated early and late recoveries from ventilator-induced diaphragmatic dysfunction in a mouse model. DESIGN: Experimental randomized study. SETTING: Research laboratory. SUBJECTS: C57/BL6 mice. INTERVENTIONS: Six groups of C57/BL6 mice. Mice were ventilated for 6 hours and then euthanatized immediately (n = 18), or 1 (n = 18) or 10 days after extubation with (n = 5) and without S107 (n = 16) treatment. Mice euthanatized immediately after 6 hours of anesthesia (n = 15) or after 6 hours of anesthesia and 10 days of recovery (n = 5) served as controls. MEASUREMENTS AND MAIN RESULTS: For each group, diaphragm force production, posttranslational modification of ryanodine receptor, oxidative stress, proteolysis, and cross-sectional areas were evaluated. After 6 hours of mechanical ventilation, diaphragm force production was decreased by 25-30%, restored to the control levels 1 day after extubation, and secondarily decreased by 20% 10 days after extubation compared with controls. Ryanodine receptor was protein kinase A-hyperphosphorylated, S-nitrosylated, oxidized, and depleted of its stabilizing subunit calstabin-1 6 hours after the onset of the mechanical ventilation, 1 and 10 days after extubation. Post extubation treatment with S107, a Rycal drug that stabilizes the ryanodine complex, did reverse the loss of diaphragmatic force associated with mechanical ventilation. Total protein oxidation was restored to the control levels 1 day after extubation. Markers of proteolysis including calpain 1 and calpain 2 remained activated 10 days after extubation without significant changes in cross-sectional areas. CONCLUSIONS: We report that mechanical ventilation is associated with a late diaphragmatic dysfunction related to a structural alteration of the ryanodine complex that is reversed with the S107 treatment.


Assuntos
Extubação/efeitos adversos , Diafragma , Respiração Artificial/efeitos adversos , Animais , Western Blotting , Diafragma/patologia , Diafragma/fisiopatologia , Modelos Animais de Doenças , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Proteólise , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
6.
Acta Neuropathol ; 139(6): 1089-1104, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32236737

RESUMO

RYR1 encodes the type 1 ryanodine receptor, an intracellular calcium release channel (RyR1) on the skeletal muscle sarcoplasmic reticulum (SR). Pathogenic RYR1 variations can destabilize RyR1 leading to calcium leak causing oxidative overload and myopathy. However, the effect of RyR1 leak has not been established in individuals with RYR1-related myopathies (RYR1-RM), a broad spectrum of rare neuromuscular disorders. We sought to determine whether RYR1-RM affected individuals exhibit pathologic, leaky RyR1 and whether variant location in the channel structure can predict pathogenicity. Skeletal muscle biopsies were obtained from 17 individuals with RYR1-RM. Mutant RyR1 from these individuals exhibited pathologic SR calcium leak and increased activity of calcium-activated proteases. The increased calcium leak and protease activity were normalized by ex-vivo treatment with S107, a RyR stabilizing Rycal molecule. Using the cryo-EM structure of RyR1 and a new dataset of > 2200 suspected RYR1-RM affected individuals we developed a method for assigning pathogenicity probabilities to RYR1 variants based on 3D co-localization of known pathogenic variants. This study provides the rationale for a clinical trial testing Rycals in RYR1-RM affected individuals and introduces a predictive tool for investigating the pathogenicity of RYR1 variants of uncertain significance.


Assuntos
Cálcio/metabolismo , Doenças Musculares/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Citoplasma/metabolismo , Humanos , Músculo Esquelético/metabolismo , Doenças Musculares/terapia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo
7.
Circulation ; 138(11): 1144-1154, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-29593014

RESUMO

BACKGROUND: Advances in congestive heart failure (CHF) management depend on biomarkers for monitoring disease progression and therapeutic response. During systole, intracellular Ca2+ is released from the sarcoplasmic reticulum into the cytoplasm through type-2 ryanodine receptor/Ca2+ release channels. In CHF, chronically elevated circulating catecholamine levels cause pathological remodeling of type-2 ryanodine receptor/Ca2+ release channels resulting in diastolic sarcoplasmic reticulum Ca2+ leak and decreased myocardial contractility. Similarly, skeletal muscle contraction requires sarcoplasmic reticulum Ca2+ release through type-1 ryanodine receptors (RyR1), and chronically elevated catecholamine levels in CHF cause RyR1-mediated sarcoplasmic reticulum Ca2+ leak, contributing to myopathy and weakness. Circulating B-lymphocytes express RyR1 and catecholamine-responsive signaling cascades, making them a potential surrogate for defects in intracellular Ca2+ handling because of leaky RyR channels in CHF. METHODS: Whole blood was collected from patients with CHF, CHF following left-ventricular assist device implant, and controls. Blood was also collected from mice with ischemic CHF, ischemic CHF+S107 (a drug that specifically reduces RyR channel Ca2+ leak), and wild-type controls. Channel macromolecular complex was assessed by immunostaining RyR1 immunoprecipitated from lymphocyte-enriched preparations. RyR1 Ca2+ leak was assessed using flow cytometry to measure Ca2+ fluorescence in B-lymphocytes in the absence and presence of RyR1 agonists that empty RyR1 Ca2+ stores within the endoplasmic reticulum. RESULTS: Circulating B-lymphocytes from humans and mice with CHF exhibited remodeled RyR1 and decreased endoplasmic reticulum Ca2+ stores, consistent with chronic intracellular Ca2+ leak. This Ca2+ leak correlated with circulating catecholamine levels. The intracellular Ca2+ leak was significantly reduced in mice treated with the Rycal S107. Patients with CHF treated with left-ventricular assist devices exhibited a heterogeneous response. CONCLUSIONS: In CHF, B-lymphocytes exhibit remodeled leaky RyR1 channels and decreased endoplasmic reticulum Ca2+ stores consistent with chronic intracellular Ca2+ leak. RyR1-mediated Ca2+ leak in B-lymphocytes assessed using flow cytometry provides a surrogate measure of intracellular Ca2+ handling and systemic sympathetic burden, presenting a novel biomarker for monitoring response to pharmacological and mechanical CHF therapy.


Assuntos
Linfócitos B/metabolismo , Sinalização do Cálcio , Cálcio/sangue , Retículo Endoplasmático/metabolismo , Insuficiência Cardíaca/sangue , Canal de Liberação de Cálcio do Receptor de Rianodina/sangue , Idoso , Animais , Linfócitos B/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Estudos de Casos e Controles , Modelos Animais de Doenças , Retículo Endoplasmático/efeitos dos fármacos , Feminino , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Coração Auxiliar , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Norepinefrina/sangue , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Tiazepinas/farmacologia , Função Ventricular Esquerda
8.
Proc Natl Acad Sci U S A ; 113(32): 9069-74, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27457930

RESUMO

Ventilator-induced diaphragmatic dysfunction (VIDD) refers to the diaphragm muscle weakness that occurs following prolonged controlled mechanical ventilation (MV). The presence of VIDD impedes recovery from respiratory failure. However, the pathophysiological mechanisms accounting for VIDD are still not fully understood. Here, we show in human subjects and a mouse model of VIDD that MV is associated with rapid remodeling of the sarcoplasmic reticulum (SR) Ca(2+) release channel/ryanodine receptor (RyR1) in the diaphragm. The RyR1 macromolecular complex was oxidized, S-nitrosylated, Ser-2844 phosphorylated, and depleted of the stabilizing subunit calstabin1, following MV. These posttranslational modifications of RyR1 were mediated by both oxidative stress mediated by MV and stimulation of adrenergic signaling resulting from the anesthesia. We demonstrate in the murine model that such abnormal resting SR Ca(2+) leak resulted in reduced contractile function and muscle fiber atrophy for longer duration of MV. Treatment with ß-adrenergic antagonists or with S107, a small molecule drug that stabilizes the RyR1-calstabin1 interaction, prevented VIDD. Diaphragmatic dysfunction is common in MV patients and is a major cause of failure to wean patients from ventilator support. This study provides the first evidence to our knowledge of RyR1 alterations as a proximal mechanism underlying VIDD (i.e., loss of function, muscle atrophy) and identifies RyR1 as a potential target for therapeutic intervention.


Assuntos
Diafragma/fisiopatologia , Respiração Artificial/efeitos adversos , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Animais , Cálcio/metabolismo , Humanos , Camundongos , Contração Muscular , Estresse Oxidativo , Receptores Adrenérgicos beta/fisiologia , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/fisiologia , Ventiladores Mecânicos/efeitos adversos
9.
Proc Natl Acad Sci U S A ; 113(30): 8532-7, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27402766

RESUMO

Endothelial cells (ECs) are critical mediators of blood pressure (BP) regulation, primarily via the generation and release of vasorelaxants, including nitric oxide (NO). NO is produced in ECs by endothelial NO synthase (eNOS), which is activated by both calcium (Ca(2+))-dependent and independent pathways. Here, we report that intracellular Ca(2+) release from the endoplasmic reticulum (ER) via inositol 1,4,5-trisphosphate receptor (IP3R) is required for Ca(2+)-dependent eNOS activation. EC-specific type 1 1,4,5-trisphosphate receptor knockout (IP3R1(-/-)) mice are hypertensive and display blunted vasodilation in response to acetylcholine (ACh). Moreover, eNOS activity is reduced in both isolated IP3R1-deficient murine ECs and human ECs following IP3R1 knockdown. IP3R1 is upstream of calcineurin, a Ca(2+)/calmodulin-activated serine/threonine protein phosphatase. We show here that the calcineurin/nuclear factor of activated T cells (NFAT) pathway is less active and eNOS levels are decreased in IP3R1-deficient ECs. Furthermore, the calcineurin inhibitor cyclosporin A, whose use has been associated with the development of hypertension, reduces eNOS activity and vasodilation following ACh stimulation. Our results demonstrate that IP3R1 plays a crucial role in the EC-mediated vasorelaxation and the maintenance of normal BP.


Assuntos
Pressão Sanguínea/genética , Regulação da Expressão Gênica , Receptores de Inositol 1,4,5-Trifosfato/genética , Óxido Nítrico Sintase Tipo III/genética , Acetilcolina/farmacologia , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Hipertensão/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo III/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatação/genética , Vasodilatadores/farmacologia
10.
J Biol Chem ; 292(24): 10153-10168, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28476886

RESUMO

Alteration of ryanodine receptor (RyR)-mediated calcium (Ca2+) signaling has been reported in Alzheimer disease (AD) models. However, the molecular mechanisms underlying altered RyR-mediated intracellular Ca2+ release in AD remain to be fully elucidated. We report here that RyR2 undergoes post-translational modifications (phosphorylation, oxidation, and nitrosylation) in SH-SY5Y neuroblastoma cells expressing the ß-amyloid precursor protein (ßAPP) harboring the familial double Swedish mutations (APPswe). RyR2 macromolecular complex remodeling, characterized by depletion of the regulatory protein calstabin2, resulted in increased cytosolic Ca2+ levels and mitochondrial oxidative stress. We also report a functional interplay between amyloid ß (Aß), ß-adrenergic signaling, and altered Ca2+ signaling via leaky RyR2 channels. Thus, post-translational modifications of RyR occur downstream of Aß through a ß2-adrenergic signaling cascade that activates PKA. RyR2 remodeling in turn enhances ßAPP processing. Importantly, pharmacological stabilization of the binding of calstabin2 to RyR2 channels, which prevents Ca2+ leakage, or blocking the ß2-adrenergic signaling cascade reduced ßAPP processing and the production of Aß in APPswe-expressing SH-SY5Y cells. We conclude that targeting RyR-mediated Ca2+ leakage may be a therapeutic approach to treat AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Sinalização do Cálcio , Neurônios/enzimologia , Processamento de Proteína Pós-Traducional , Receptores Adrenérgicos beta 2/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Mutação , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Proteínas de Ligação a Tacrolimo/antagonistas & inibidores , Proteínas de Ligação a Tacrolimo/metabolismo
11.
Proc Natl Acad Sci U S A ; 112(36): 11389-94, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26217001

RESUMO

Calcium (Ca2+) released from the sarcoplasmic reticulum (SR) is crucial for excitation-contraction (E-C) coupling. Mitochondria, the major source of energy, in the form of ATP, required for cardiac contractility, are closely interconnected with the SR, and Ca2+ is essential for optimal function of these organelles. However, Ca2+ accumulation can impair mitochondrial function, leading to reduced ATP production and increased release of reactive oxygen species (ROS). Oxidative stress contributes to heart failure (HF), but whether mitochondrial Ca2+ plays a mechanistic role in HF remains unresolved. Here, we show for the first time, to our knowledge, that diastolic SR Ca2+ leak causes mitochondrial Ca2+ overload and dysfunction in a murine model of postmyocardial infarction HF. There are two forms of Ca2+ release channels on cardiac SR: type 2 ryanodine receptors (RyR2s) and type 2 inositol 1,4,5-trisphosphate receptors (IP3R2s). Using murine models harboring RyR2 mutations that either cause or inhibit SR Ca2+ leak, we found that leaky RyR2 channels result in mitochondrial Ca2+ overload, dysmorphology, and malfunction. In contrast, cardiac-specific deletion of IP3R2 had no major effect on mitochondrial fitness in HF. Moreover, genetic enhancement of mitochondrial antioxidant activity improved mitochondrial function and reduced posttranslational modifications of RyR2 macromolecular complex. Our data demonstrate that leaky RyR2, but not IP3R2, channels cause mitochondrial Ca2+ overload and dysfunction in HF.


Assuntos
Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Immunoblotting , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias Cardíacas/ultraestrutura , Mutação , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
12.
Acta Neuropathol ; 134(5): 749-767, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28631094

RESUMO

The mechanisms underlying ryanodine receptor (RyR) dysfunction associated with Alzheimer disease (AD) are still not well understood. Here, we show that neuronal RyR2 channels undergo post-translational remodeling (PKA phosphorylation, oxidation, and nitrosylation) in brains of AD patients, and in two murine models of AD (3 × Tg-AD, APP +/- /PS1 +/-). RyR2 is depleted of calstabin2 (KFBP12.6) in the channel complex, resulting in endoplasmic reticular (ER) calcium (Ca2+) leak. RyR-mediated ER Ca2+ leak activates Ca2+-dependent signaling pathways, contributing to AD pathogenesis. Pharmacological (using a novel RyR stabilizing drug Rycal) or genetic rescue of the RyR2-mediated intracellular Ca2+ leak improved synaptic plasticity, normalized behavioral and cognitive functions and reduced Aß load. Genetically altered mice with congenitally leaky RyR2 exhibited premature and severe defects in synaptic plasticity, behavior and cognitive function. These data provide a mechanism underlying leaky RyR2 channels, which could be considered as potential AD therapeutic targets.


Assuntos
Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Transtornos Cognitivos/metabolismo , Processamento de Proteína Pós-Traducional , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Doença de Alzheimer/patologia , Animais , Sinalização do Cálcio , Transtornos Cognitivos/patologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/fisiologia , Fosforilação , Reconhecimento Psicológico/fisiologia , Retículo Sarcoplasmático/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(42): 15250-5, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288763

RESUMO

Age-related skeletal muscle dysfunction is a leading cause of morbidity that affects up to half the population aged 80 or greater. Here we tested the effects of increased mitochondrial antioxidant activity on age-dependent skeletal muscle dysfunction using transgenic mice with targeted overexpression of the human catalase gene to mitochondria (MCat mice). Aged MCat mice exhibited improved voluntary exercise, increased skeletal muscle specific force and tetanic Ca(2+) transients, decreased intracellular Ca(2+) leak and increased sarcoplasmic reticulum (SR) Ca(2+) load compared with age-matched wild type (WT) littermates. Furthermore, ryanodine receptor 1 (the sarcoplasmic reticulum Ca(2+) release channel required for skeletal muscle contraction; RyR1) from aged MCat mice was less oxidized, depleted of the channel stabilizing subunit, calstabin1, and displayed increased single channel open probability (Po). Overall, these data indicate a direct role for mitochondrial free radicals in promoting the pathological intracellular Ca(2+) leak that underlies age-dependent loss of skeletal muscle function. This study harbors implications for the development of novel therapeutic strategies, including mitochondria-targeted antioxidants for treatment of mitochondrial myopathies and other healthspan-limiting disorders.


Assuntos
Envelhecimento , Antioxidantes/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Catalase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Oxigênio/metabolismo , Qualidade de Vida , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Estresse Mecânico , Proteína 1A de Ligação a Tacrolimo/metabolismo , Fatores de Tempo
14.
Circ Res ; 111(6): 708-17, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22828895

RESUMO

RATIONALE: Atrial fibrillation (AF) is the most common cardiac arrhythmia, however the mechanism(s) causing AF remain poorly understood and therapy is suboptimal. The ryanodine receptor (RyR2) is the major calcium (Ca2+) release channel on the sarcoplasmic reticulum (SR) required for excitation-contraction coupling in cardiac muscle. OBJECTIVE: In the present study, we sought to determine whether intracellular diastolic SR Ca2+ leak via RyR2 plays a role in triggering AF and whether inhibiting this leak can prevent AF. METHODS AND RESULTS: We generated 3 knock-in mice with mutations introduced into RyR2 that result in leaky channels and cause exercise induced polymorphic ventricular tachycardia in humans [catecholaminergic polymorphic ventricular tachycardia (CPVT)]. We examined AF susceptibility in these three CPVT mouse models harboring RyR2 mutations to explore the role of diastolic SR Ca2+ leak in AF. AF was stimulated with an intra-esophageal burst pacing protocol in the 3 CPVT mouse models (RyR2-R2474S+/-, 70%; RyR2-N2386I+/-, 60%; RyR2-L433P+/-, 35.71%) but not in wild-type (WT) mice (P<0.05). Consistent with these in vivo results, there was a significant diastolic SR Ca2+ leak in atrial myocytes isolated from the CPVT mouse models. Calstabin2 (FKBP12.6) is an RyR2 subunit that stabilizes the closed state of RyR2 and prevents a Ca2+ leak through the channel. Atrial RyR2 from RyR2-R2474S+/- mice were oxidized, and the RyR2 macromolecular complex was depleted of calstabin2. The Rycal drug S107 stabilizes the closed state of RyR2 by inhibiting the oxidation/phosphorylation induced dissociation of calstabin2 from the channel. S107 reduced the diastolic SR Ca2+ leak in atrial myocytes and decreased burst pacing-induced AF in vivo. S107 did not reduce the increased prevalence of burst pacing-induced AF in calstabin2-deficient mice, confirming that calstabin2 is required for the mechanism of action of the drug. CONCLUSIONS: The present study demonstrates that RyR2-mediated diastolic SR Ca2+ leak in atrial myocytes is associated with AF in CPVT mice. Moreover, the Rycal S107 inhibited diastolic SR Ca2+ leak through RyR2 and pacing-induced AF associated with CPVT mutations.


Assuntos
Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Modelos Animais de Doenças , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/metabolismo , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Cafeína/farmacologia , Estimulação Cardíaca Artificial , Células Cultivadas , Eletrocardiografia/efeitos dos fármacos , Epinefrina/farmacologia , Técnicas de Introdução de Genes , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Immunoblotting , Camundongos , Camundongos Knockout , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Condicionamento Físico Animal/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/fisiopatologia , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Tiazepinas/farmacologia
15.
Proc Natl Acad Sci U S A ; 108(32): 13258-63, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21788490

RESUMO

Myocardial ischemic disease is the major cause of death worldwide. After myocardial infarction, reperfusion of infracted heart has been an important objective of strategies to improve outcomes. However, cardiac ischemia/reperfusion (I/R) is characterized by inflammation, arrhythmias, cardiomyocyte damage, and, at the cellular level, disturbance in Ca(2+) and redox homeostasis. In this study, we sought to determine how acute inflammatory response contributes to reperfusion injury and Ca(2+) homeostasis disturbance after acute ischemia. Using a rat model of I/R, we show that circulating levels of TNF-α and cardiac caspase-8 activity were increased within 6 h of reperfusion, leading to myocardial nitric oxide and mitochondrial ROS production. At 1 and 15 d after reperfusion, caspase-8 activation resulted in S-nitrosylation of the RyR2 and depletion of calstabin2 from the RyR2 complex, resulting in diastolic sarcoplasmic reticulum (SR) Ca(2+) leak. Pharmacological inhibition of caspase-8 before reperfusion with Q-LETD-OPh or prevention of calstabin2 depletion from the RyR2 complex with the Ca(2+) channel stabilizer S107 ("rycal") inhibited the SR Ca(2+) leak, reduced ventricular arrhythmias, infarct size, and left ventricular remodeling after 15 d of reperfusion. TNF-α-induced caspase-8 activation leads to leaky RyR2 channels that contribute to myocardial remodeling after I/R. Thus, early prevention of SR Ca(2+) leak trough normalization of RyR2 function is cardioprotective.


Assuntos
Caspase 8/metabolismo , Ventrículos do Coração/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Ativação Enzimática , Fluorescência , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Fenantridinas/metabolismo , Ratos , Ratos Endogâmicos WKY , Fator de Necrose Tumoral alfa/sangue , Remodelação Ventricular
16.
medRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559077

RESUMO

Background: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare inherited arrhythmia caused by mutations in the ryanodine receptor type 2 (RyR2). Diagnosis of CPVT often occurs after a major cardiac event, thus posing a severe threat to the patient's health. Methods: Publication databases, including PubMed, Scopus, and Embase, were searched for articles on patients with RyR2-CPVT mutations and their associated clinical presentation. Articles were reviewed by two independent reviewers and mutations were analyzed for demographic information, mutation distribution, and therapeutics. The human RyR2 cryo-EM structure was used to model CPVT mutations and predict the diagnosis and outcomes of CPVT patients. Findings: We present a database of 1008 CPVT patients from 227 papers. Data analyses revealed that patients most often experienced exercise-induced syncope in their early teenage years but the diagnosis of CPVT took a decade. Mutations located near key regulatory sites in the channel were associated with earlier onset of CPVT symptoms including sudden cardiac death. Interpretation: The present study provides a road map for predicting clinical outcomes based on the location of RyR2 mutations in CPVT patients. The study was partially limited by the inconsistency in the depth of information provided in each article, but nevertheless is an important contribution to the understanding of the clinical and molecular basis of CPVT and suggests the need for early diagnosis and creative approaches to disease management. Funding: The work was supported by grant NIH R01HL145473, P01 HL164319 R25HL156002, T32 HL120826.

17.
FASEB J ; 26(3): 1009-17, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22090316

RESUMO

Recent studies indicate that members of the multidrug-resistance protein (MRP) family belonging to ATP binding cassette type C (ABCC) membrane proteins extrude cyclic nucleotides from various cell types. This study aimed to determine whether MRP proteins regulate cardiac cAMP homeostasis. Here, we demonstrate that MRP4 is the predominant isoform present at the plasma membrane of cardiacmyocytes and that it mediates the efflux of cAMP in these cells. MRP4-deficient mice displayed enhanced cardiac myocyte cAMP formation, contractility, and cardiac hypertrophy at 9 mo of age, an effect that was compensated transiently by increased phosphodiesterase expression at young age. These findings suggest that cAMP extrusion via MRP4 acts together with phosphodiesterases to control cAMP levels in cardiac myocytes.


Assuntos
AMP Cíclico/metabolismo , Homeostase , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Miócitos Cardíacos/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Western Blotting , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/genética , Cardiomegalia/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Ecocardiografia , Feminino , Regulação Enzimológica da Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Contração Miocárdica/genética , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
18.
Circ Res ; 109(3): 281-90, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21659649

RESUMO

RATIONALE: Mutations in the cardiac type 2 ryanodine receptor (RyR2) have been linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT-associated RyR2 mutations cause fatal ventricular arrhythmias in young individuals during ß-adrenergic stimulation. OBJECTIVE: This study sought to determine the effects of a novel RyR2-G230C mutation and whether this mutation and RyR2-P2328S alter the sensitivity of the channel to luminal calcium (Ca(2+)). METHODS AND RESULTS: Functional characterizations of recombinant human RyR2-G230C channels were performed under conditions mimicking stress. Human RyR2 mutant channels were generated by site-directed mutagenesis and heterologously expressed in HEK293 cells together with calstabin2. RyR2 channels were measured to examine the regulation of the channels by cytosolic versus luminal sarcoplasmic reticulum Ca(2+). A 50-year-old white man with repeated syncopal episodes after exercise had a cardiac arrest and harbored the mutation RyR2-G230C. cAMP-dependent protein kinase-phosphorylated RyR2-G230C channels exhibited a significantly higher open probability at diastolic Ca(2+) concentrations, associated with a depletion of calstabin2. The luminal Ca(2+) sensitivities of RyR2-G230C and RyR2-P2328S channels were WT-like. CONCLUSIONS: The RyR2-G230C mutant exhibits similar biophysical defects compared with previously characterized CPVT mutations: decreased binding of the stabilizing subunit calstabin2 and a leftward shift in the Ca(2+) dependence for activation under conditions that simulate exercise, consistent with a "leaky" channel. Both RyR2-G230C and RyR2-P2328S channels exhibit normal luminal Ca(2+) activation. Thus, diastolic sarcoplasmic reticulum Ca(2+) leak caused by reduced calstabin2 binding and a leftward shift in the Ca(2+) dependence for activation by diastolic levels of cytosolic Ca(2+) is a common mechanism underlying CPVT.


Assuntos
Cálcio/fisiologia , Morte Súbita Cardíaca , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Taquicardia Ventricular/fisiopatologia , Catecolaminas/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Citosol/fisiologia , Diástole/fisiologia , Eletrocardiografia , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Masculino , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Fenótipo , Mutação Puntual , Proteínas Recombinantes/genética , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética , Proteínas de Ligação a Tacrolimo/fisiologia
19.
Proc Natl Acad Sci U S A ; 107(22): 10274-9, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20479242

RESUMO

The force frequency relationship (FFR), first described by Bowditch 139 years ago as the observation that myocardial contractility increases proportionally with increasing heart rate, is an important mediator of enhanced cardiac output during exercise. Individuals with heart failure have defective positive FFR that impairs their cardiac function in response to stress, and the degree of positive FFR deficiency correlates with heart failure progression. We have identified a mechanism for FFR involving heart rate dependent phosphorylation of the major cardiac sarcoplasmic reticulum calcium release channel/ryanodine receptor (RyR2), at Ser2814, by calcium/calmodulin-dependent serine/threonine kinase-delta (CaMKIIdelta). Mice engineered with an RyR2-S2814A mutation have RyR2 channels that cannot be phosphorylated by CaMKIIdelta, and exhibit a blunted positive FFR. Ex vivo hearts from RyR2-S2814A mice also have blunted positive FFR, and cardiomyocytes isolated from the RyR2-S2814A mice exhibit impaired rate-dependent enhancement of cytosolic calcium levels and fractional shortening. The cardiac RyR2 macromolecular complexes isolated from murine and human failing hearts have reduced CaMKIIdelta levels. These data indicate that CaMKIIdelta phosphorylation of RyR2 plays an important role in mediating positive FFR in the heart, and that defective regulation of RyR2 by CaMKIIdelta-mediated phosphorylation is associated with the loss of positive FFR in failing hearts.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/fisiologia , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Débito Cardíaco/genética , Débito Cardíaco/fisiologia , Primers do DNA/genética , Frequência Cardíaca/genética , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Contração Miocárdica/genética , Miócitos Cardíacos/fisiologia , Fosforilação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
20.
Proc Natl Acad Sci U S A ; 107(4): 1559-64, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20080623

RESUMO

Patients with Duchenne muscular dystrophy (DMD) have a progressive dilated cardiomyopathy associated with fatal cardiac arrhythmias. Electrical and functional abnormalities have been attributed to cardiac fibrosis; however, electrical abnormalities may occur in the absence of overt cardiac histopathology. Here we show that structural and functional remodeling of the cardiac sarcoplasmic reticulum (SR) Ca(2+) release channel/ryanodine receptor (RyR2) occurs in the mdx mouse model of DMD. RyR2 from mdx hearts were S-nitrosylated and depleted of calstabin2 (FKBP12.6), resulting in "leaky" RyR2 channels and a diastolic SR Ca(2+) leak. Inhibiting the depletion of calstabin2 from the RyR2 complex with the Ca(2+) channel stabilizer S107 ("rycal") inhibited the SR Ca(2+) leak, inhibited aberrant depolarization in isolated cardiomyocytes, and prevented arrhythmias in vivo. This suggests that diastolic SR Ca(2+) leak via RyR2 due to S-nitrosylation of the channel and calstabin2 depletion from the channel complex likely triggers cardiac arrhythmias. Normalization of the RyR2-mediated diastolic SR Ca(2+) leak prevents fatal sudden cardiac arrhythmias in DMD.


Assuntos
Arritmias Cardíacas/metabolismo , Ventrículos do Coração/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/genética , Cálcio/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA