RESUMO
The aim of the present study was to investigate the knowledge about oral cancer in a Brazilian population, including initial clinical signs, causal factors, and the health professional of first choice when suspected of the disease. A total of 2261 participants were interviewed in a cross-sectional study, to investigate associations between sociodemographic descriptive variables and knowledge of oral cancer, risk factors, disease precursor lesions, and health professional of choice for diagnosis. The variables were descriptively analyzed and possible associations investigated considering p values < 0.05. A total of 83.4% of participants reported knowing about oral cancer, and 59.5% reported knowing about potentially malignant lesions; both variables were associated (p < 0.0001). Tobacco was identified as the main risk factor (83.6%), followed by family history (66.2%), and poor oral hygiene (54.5%). Interviewees with higher education level had greater knowledge about cancer (p < 0.0001), and the dentist was the health professional of choice for 43.1% of those who knew about the disease (p = 0.007), with the generalist being the most sought specialist. The population evaluated had a low knowledge of oral cancer given the lack of specific clarifications on etiological factors and risk situations. Health education initiatives are necessary to increase population awareness of potentially malignant oral lesions and improve early diagnosis and recognition of the dentist as a qualified professional for diagnosis of the disease.
Assuntos
Neoplasias Bucais , Estudos Transversais , Educação em Saúde , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Neoplasias Bucais/diagnóstico , Fatores de Risco , Inquéritos e QuestionáriosRESUMO
BACKGROUND & AIMS: Resident macrophages are derived from yolk sac precursors and seed the liver during embryogenesis. Native cells may be replaced by bone marrow precursors during extensive injuries, irradiation, and infections. We investigated the liver populations of myeloid immune cells and their location, as well as the dynamics of phagocyte repopulation after full depletion. The effects on liver function due to the substitution of original phagocytes by bone marrow-derived surrogates were also examined. METHODS: We collected and analyzed liver tissues from C57BL/6 (control), LysM-EGFP, B6 ACTb-EGFP, CCR2-/-, CD11c-EYFP, CD11c-EYFP-DTR, germ-free mice, CX3CR1gfp/gfp, CX3CR1gpf/wt, and CX3CR1-DTR-EYFP. Liver nonparenchymal cells were immunophenotyped using mass cytometry and gene expression analyses. Kupffer and dendritic cells were depleted from mice by administration of clodronate, and their location and phenotype were examined using intravital microscopy and time-of-flight mass cytometry. Mice were given acetaminophen gavage or intravenous injections of fluorescently labeled Escherichia coli, blood samples were collected and analyzed, and liver function was evaluated. We assessed cytokine profiles of liver tissues using a multiplexed array. RESULTS: Using mass cytometry and gene expression analyses, we identified 2 populations of hepatic macrophages and 2 populations of monocytes. We also identified 4 populations of dendritic cells and 1 population of basophils. After selective depletion of liver phagocytes, intravascular myeloid precursors began to differentiate into macrophages and dendritic cells; dendritic cells migrated out of sinusoids, after a delay, via the chemokine CX3CL1. The cell distribution returned to normal in 2 weeks, but the repopulated livers were unable to fully respond to drug-induced injury or clear bacteria for at least 1 month. This defect was associated with increased levels of inflammatory cytokines, and dexamethasone accelerated the repopulation of liver phagocytes. CONCLUSIONS: In studies of hepatic phagocyte depletion in mice, we found that myeloid precursors can differentiate into liver macrophages and dendritic cells, which each localize to distinct tissue compartments. During replenishment, macrophages acquire the ability to respond appropriately to hepatic injury and to remove bacteria from the blood stream.
Assuntos
Antígenos CD/análise , Células da Medula Óssea/fisiologia , Diferenciação Celular , Fígado/citologia , Fígado/fisiopatologia , Células Mieloides/fisiologia , Acetaminofen , Animais , Células da Medula Óssea/citologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Quimiocina CX3CL1/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/química , Imunofenotipagem/métodos , Microscopia Intravital , Lectinas/genética , Fígado/imunologia , Fígado/metabolismo , Macrófagos/química , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microvasos/metabolismo , Monócitos/química , Células Mieloides/química , Fenótipo , TranscriptomaRESUMO
Food allergy is an adverse immune response to dietary proteins. Hydrolysates are frequently used for children with milk allergy. However, hydrolysates effects afterwards are poorly studied. The aim of this study was to investigate the immunological consequences of hydrolyzed whey protein in allergic mice. For that, we developed a novel model of food allergy in BALB/c mice sensitized with alum-adsorbed ß-lactoglobulin. These mice were orally challenged with either whey protein or whey hydrolysate. Whey-challenged mice had elevated levels of specific IgE and lost weight. They also presented gut inflammation, enhanced levels of SIgA and IL-5 as well as decreased production of IL-4 and IL-10 in the intestinal mucosa. Conversely, mice challenged with hydrolyzate maintained normal levels of IgE, IL-4 and IL-5 and showed no sign of gut inflammation probably due to increased IL-12 production in the gut. Thus, consumption of hydrolysate prevented the development of clinical signs of food allergy in mice.
Assuntos
Mucosa Intestinal/imunologia , Lactoglobulinas/imunologia , Hipersensibilidade a Leite/imunologia , Hidrolisados de Proteína/imunologia , Proteínas do Soro do Leite/imunologia , Animais , Modelos Animais de Doenças , Hipersensibilidade Alimentar/imunologia , Imunoglobulina A Secretora/imunologia , Imunoglobulina A Secretora/metabolismo , Imunoglobulina E/sangue , Inflamação/imunologia , Interleucina-10/metabolismo , Subunidade p35 da Interleucina-12/biossíntese , Subunidade p35 da Interleucina-12/imunologia , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Hidrolisados de Proteína/administração & dosagem , Soro do Leite/imunologia , Proteínas do Soro do Leite/farmacologiaRESUMO
Several antigens can act as allergens eliciting IgE-mediated food allergy reactions when fed to sensitized animals. One of them is ovalbumin (OVA) which is the main allergen in egg white. Allergic mice develop aversion to OVA consumption. This aversive behavior is associated with anxiety, and it can be transferred to non-sensitized mice by injection of serum of allergic mice. However, it is yet to be determined whether altered behavior is a general component of food allergy or whether it is specific for some types of allergens. Cow's milk allergy is the most prevalent food allergy that usually begins early in life and ß-lactoglobulin (BLG) is the milk component with the highest allergenicity. In this study, we investigated behavioral and neuroimmune circuits triggered by allergic sensitization to BLG. A neuroimmune conflict between aversion and reward was observed in a model of food allergy induced by BLG intake. Mice sensitized to BLG did not present aversive behavior when BLG was used for sensitization and oral challenge. Mice allergic to BLG preferred to drink the allergen-containing solution over water even though they had high levels of specific IgE, inflammatory cells in the intestinal mucosa and significant weight loss. When sensitized to OVA and challenged with the same antigen, mice had increased levels of neuron activation in the amygdala, a brain area related to anxiety. On the other hand, when mice were sensitized to OVA and received a mixture of BLG and OVA in the oral challenge, mice preferred to drink this mixture, despite their aversion to OVA, which was associated with neuron activation in the nucleus accumbens, an area related to reward behavior. Thus, the aversive behavior observed in food allergy to OVA does not apply to all antigens and some allergens may activate the brain reward system rather than anxiety and aversion. Our study provides novel insights into the neuroimmune conflicts regarding preference and avoidance to a common antigen associated with food allergy.
RESUMO
Dietary supplementation with conjugated linoleic acid (CLA) has been proposed for weight management and to prevent gut inflammation. However, some animal studies suggest that supplementation with CLA leads to the development of nonalcoholic fatty liver disease. The aims of this study were to test the efficiency of CLA in preventing dextran sulfate sodium (DSS)-induced colitis, to analyze the effects of CLA in the liver function, and to access putative liver alterations upon CLA supplementation during colitis. So, C57BL/6 mice were supplemented for 3 weeks with either control diet (AIN-G) or 1% CLA-supplemented diet. CLA content in the diet and in the liver of mice fed CLA containing diet were accessed by gas chromatography. On the first day of the third week of dietary treatment, mice received ad libitum a 1.5%-2.5% DSS solution for 7 days. Disease activity index score was evaluated; colon and liver samples were stained by hematoxylin and eosin for histopathology analysis and lamina propria cells were extracted to access the profile of innate cell infiltrate. Metabolic alterations before and after colitis induction were accessed by an open calorimetric circuit. Serum glucose, cholesterol, triglycerides and alanine aminotransaminase were measured; the content of fat in liver and feces was also accessed. CLA prevented weight loss, histopathologic and macroscopic signs of colitis, and inflammatory infiltration. Mice fed CLA-supplemented without colitis induction diet developed steatosis, which was prevented in mice with colitis probably due to the higher lipid consumption as energy during gut inflammation. This result suggests that CLA is safe for use during gut inflammation but not at steady-state conditions.
Assuntos
Colite/dietoterapia , Ácidos Linoleicos Conjugados/farmacologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Alanina Transaminase/sangue , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/farmacologia , Colite/induzido quimicamente , Colite/prevenção & controle , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Sulfato de Dextrana/toxicidade , Suplementos Nutricionais , Feminino , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/fisiologia , Ácido Linoleico/metabolismo , Ácidos Linoleicos Conjugados/efeitos adversos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Dietary proteins can influence the maturation of the immune system, particularly the gut-associated lymphoid tissue, when consumed from weaning to adulthood. Moreover, replacement of dietary proteins by amino acids at weaning has been shown to impair the generation of regulatory T cells in the gut as well as immune activities such as protective response to infection, induction of oral and nasal tolerance as well as allergic responses. Polymeric and elemental diets are used in the clinical practice, but the specific role of intact proteins and free amino acids during the intestinal inflammation are not known. It is plausible that these two dietary nitrogen sources would yield distinct immunological outcomes since proteins are recognized by the immune system as antigens and amino acids do not bind to antigen-recognition receptors but instead to intracellular receptors such as mammalian target of rapamycin (mTOR). In this study, our aim was to evaluate the effects of consumption of an amino acid-containing diet (AA diet) versus a control protein-containing diet in adult mice at steady state and during colitis development. We showed that consumption of a AA diet by adult mature mice lead to various immunological changes including decrease in the production of serum IgG as well as increase in the levels of IL-6, IL-17A, TGF-ß, and IL-10 in the small and large intestines. It also led to changes in the intestinal morphology, to increase in intestinal permeability, in the number of total and activated CD4+ T cells in the small intestine as well as in the frequency of proliferating cells in the colon. Moreover, consumption of AA diet during and prior to development of dextran sodium sulfate-induced colitis exacerbated gut inflammation. Administration of rapamycin during AA diet consumption prevented colitis exacerbation suggesting that mTOR activation was involved in the effects triggered by the AA diet. Therefore, our study suggests that different outcomes can result from the use of diets containing either intact proteins or free amino acids such as elemental, semielemental, and polymeric diets during intestinal inflammation. These results may contribute to the design of nutritional therapeutic intervention for inflammatory bowel diseases.