Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 12(5): 317-23, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26974814

RESUMO

Epigenetic gene regulation is a dynamic process orchestrated by chromatin-modifying enzymes. Many of these master regulators exert their function through covalent modification of DNA and histone proteins. Aberrant epigenetic processes have been implicated in the pathophysiology of multiple human diseases. Small-molecule inhibitors have been essential to advancing our understanding of the underlying molecular mechanisms of epigenetic processes. However, the resolution offered by small molecules is often insufficient to manipulate epigenetic processes with high spatiotemporal control. Here we present a generalizable approach, referred to as 'chemo-optical modulation of epigenetically regulated transcription' (COMET), enabling high-resolution, optical control of epigenetic mechanisms based on photochromic inhibitors of human histone deacetylases using visible light. COMET probes may be translated into new therapeutic strategies for diseases where conditional and selective epigenome modulation is required.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , Luz , Optogenética/métodos , Compostos Azo/química , Epigênese Genética , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular
2.
Bioorg Med Chem Lett ; 26(4): 1265-1271, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26804233

RESUMO

Targeting chromatin-mediated epigenetic regulation has emerged as a potential avenue for developing novel therapeutics for a wide range of central nervous system disorders, including cognitive disorders and depression. Histone deacetylase (HDAC) inhibitors have been pursued as cognitive enhancers that impact the regulation of gene expression and other mechanisms integral to neuroplasticity. Through systematic modification of the structure of crebinostat, a previously discovered cognitive enhancer that affects genes critical to memory and enhances synaptogenesis, combined with biochemical and neuronal cell-based screening, we identified a novel hydroxamate-based HDAC inhibitor, here named neurinostat, with increased potency compared to crebinostat in inducing neuronal histone acetylation. In addition, neurinostat was found to have a pharmacokinetic profile in mouse brain modestly improved over that of crebinostat. This discovery of neurinostat and demonstration of its effects on neuronal HDACs adds to the available pharmacological toolkit for dissecting the molecular and cellular mechanisms of neuroepigenetic regulation in health and disease.


Assuntos
Compostos de Bifenilo/química , Encéfalo/metabolismo , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Hidrazinas/química , Acetilação , Animais , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/farmacocinética , Células Cultivadas , Meia-Vida , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacocinética , Histona Desacetilases/química , Histonas/metabolismo , Hidrazinas/síntese química , Hidrazinas/farmacocinética , Concentração Inibidora 50 , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 24(18): 4008-4015, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27377864

RESUMO

The structure-activity and structure-kinetic relationships of a series of novel and selective ortho-aminoanilide inhibitors of histone deacetylases (HDACs) 1 and 2 are described. Different kinetic and thermodynamic selectivity profiles were obtained by varying the moiety occupying an 11Å channel leading to the Zn(2+) catalytic pocket of HDACs 1 and 2, two paralogs with a high degree of structural similarity. The design of these novel inhibitors was informed by two ligand-bound crystal structures of truncated hHDAC2. BRD4884 and BRD7232 possess kinetic selectivity for HDAC1 versus HDAC2. We demonstrate that the binding kinetics of HDAC inhibitors can be tuned for individual isoforms in order to modulate target residence time while retaining functional activity and increased histone H4K12 and H3K9 acetylation in primary mouse neuronal cell culture assays. These chromatin modifiers, with tuned binding kinetic profiles, can be used to define the relation between target engagement requirements and the pharmacodynamic response of HDACs in different disease applications.


Assuntos
Anilidas/química , Anilidas/farmacologia , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Acetilação/efeitos dos fármacos , Aminação , Animais , Células Cultivadas , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Humanos , Cinética , Camundongos , Simulação de Acoplamento Molecular
4.
Bioconjug Chem ; 25(6): 1043-51, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24797834

RESUMO

Small molecule fluorophores are indispensable tools for modern biomedical imaging techniques. In this report, we present the development of a new class of BODIPY dyes based on an alkoxy-fluoro-boron-dipyrromethene core. These novel fluorescent dyes, which we term MayaFluors, are characterized by good aqueous solubility and favorable in vitro physicochemical properties. MayaFluors are readily accessible in good yields in a one-pot, two-step approach starting from well-established BODIPY dyes, and allow for facile modification with functional groups of relevance to bioconjugate chemistry and bioorthogonal labeling. Biological profiling in living cells demonstrates excellent membrane permeability, low nonspecific binding, and lack of cytotoxicity.


Assuntos
Compostos de Boro/análise , Corantes Fluorescentes/análise , Imagem Molecular/métodos , Compostos de Boro/síntese química , Compostos de Boro/química , Permeabilidade da Membrana Celular , Sobrevivência Celular , Feminino , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Células MCF-7 , Estrutura Molecular , Solubilidade , Células Tumorais Cultivadas
5.
Sci Rep ; 14(1): 9064, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643236

RESUMO

Frontotemporal dementia (FTD) is a debilitating neurodegenerative disorder with currently no disease-modifying treatment options available. Mutations in GRN are one of the most common genetic causes of FTD, near ubiquitously resulting in progranulin (PGRN) haploinsufficiency. Small molecules that can restore PGRN protein to healthy levels in individuals bearing a heterozygous GRN mutation may thus have therapeutic value. Here, we show that epigenetic modulation through bromodomain and extra-terminal domain (BET) inhibitors (BETi) potently enhance PGRN protein levels, both intracellularly and secreted forms, in human central nervous system (CNS)-relevant cell types, including in microglia-like cells. In terms of potential for disease modification, we show BETi treatment effectively restores PGRN levels in neural cells with a GRN mutation known to cause PGRN haploinsufficiency and FTD. We demonstrate that BETi can rapidly and durably enhance PGRN in neural progenitor cells (NPCs) in a manner dependent upon BET protein expression, suggesting a gain-of-function mechanism. We further describe a CNS-optimized BETi chemotype that potently engages endogenous BRD4 and enhances PGRN expression in neuronal cells. Our results reveal a new epigenetic target for treating PGRN-deficient forms of FTD and provide mechanistic insight to aid in translating this discovery into therapeutics.


Assuntos
Demência Frontotemporal , Humanos , Progranulinas/metabolismo , Demência Frontotemporal/tratamento farmacológico , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mutação , Epigênese Genética , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo
6.
Hum Mol Genet ; 20(12): 2344-55, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21447599

RESUMO

The expanded CAG repeat that causes striatal cell vulnerability in Huntington's disease (HD) encodes a polyglutamine tract in full-length huntingtin that is correlated with cellular [ATP] and [ATP/ADP]. Since striatal neurons are vulnerable to energy deficit, we have investigated, in Hdh CAG knock-in mice and striatal cells, the hypothesis that decreased energetics may affect neuronal (N)-cadherin, a candidate energy-sensitive adhesion protein that may contribute to HD striatal cell sensitivity. In vivo, N-cadherin was sensitive to ischemia and to the effects of full-length mutant huntingtin, progressively decreasing in Hdh(Q111) striatum with age. In cultured striatal cells, N-cadherin was decreased by ATP depletion and STHdh(Q111) striatal cells exhibited dramatically decreased N-cadherin, due to decreased Cdh2 mRNA and enhanced N-cadherin turnover, which was partially normalized by adenine supplementation to increase [ATP] and [ATP/ADP]. Consistent with decreased N-cadherin function, STHdh(Q111) striatal cells displayed profound deficits in calcium-dependent N-cadherin-mediated cell clustering and cell-substratum adhesion, and primary Hdh(Q111) striatal neuronal cells exhibited decreased N-cadherin and an abundance of immature neurites, featuring diffuse, rather than clustered, staining for N-cadherin and synaptic vesicle markers, which was partially rescued by adenine treatment. Thus, mutant full-length huntingtin, via energetic deficit, contributes to decreased N-cadherin levels in striatal neurons, with detrimental effects on neurite maturation, strongly suggesting that N-cadherin-mediated signaling merits investigation early in the HD pathogenic disease process.


Assuntos
Caderinas/metabolismo , Corpo Estriado/citologia , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/fisiologia , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Adenina , Trifosfato de Adenosina/metabolismo , Animais , Adesão Celular/fisiologia , Células Cultivadas , Corpo Estriado/metabolismo , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Técnicas de Introdução de Genes , Humanos , Proteína Huntingtina , Immunoblotting , Imuno-Histoquímica , Camundongos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168389

RESUMO

Tauopathies are a class of neurodegenerative diseases characterized by the progressive misfolding and accumulation of pathological tau protein in focal regions of the brain, leading to insidious neurodegeneration. Abnormalities in cholesterol metabolism and homeostasis have also been implicated in various neurodegenerative diseases. However, the connection between cholesterol dysregulation and tau pathology remains largely unknown. To model and measure the impact of cholesterol dysregulation on tau, we utilized a combination of in vitro and ex vivo tau aggregation assays using an engineered tau biosensor cell line and human induced pluripotent stem cell (iPSC)-derived neuronal cultures from an individual harboring an autosomal dominant P301L tau mutation and from a healthy control. We demonstrate that excess cholesterol esters lead to an increased rate of tau aggregation in vitro and an increase in seed-dependent insoluble tau aggregates detected in the biosensor line. We observed a strong correlation between cholesterol ester concentration and the presence of high-molecular-weight, oligomeric tau species. Importantly, in tauopathy patient iPSC-derived neurons harboring a P301L tau mutation with endogenous forms of misfolded tau, we show that acute dysregulation of cholesterol homeostasis through acute exposure to human plasma-purified cholesterol esters formed by the linkage of fatty acids to the hydroxyl group of cholesterol leads to the rapid accumulation of phosphorylated tau. Conversely, treatment with the same cholesterol esters pool did not lead to subsequent accumulation of phosphorylated tau in control iPSC-derived neurons. Finally, treatment with a heterobifunctional, small-molecule degrader designed to selectively engage and catalyze the ubiquitination and proteasomal degradation of aberrant tau species prevented cholesterol ester-induced aggregation of tau in the biosensor cell line in a Cereblon E3 ligase-dependent manner. Degrader treatment also restored the resiliency of tauopathy patient-derived neurons towards cholesterol ester-induced tau aggregation phenotypes. Taken together, our study supports a key role of cholesterol dysregulation in tau aggregation. Moreover, it provides further pre-clinical validation of the therapeutic strategy of targeted protein degradation with heterobifunctional tau degraders for blocking tau seeding.

8.
Sci Rep ; 11(1): 17029, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426604

RESUMO

Mutations in MAPT (microtubule-associated protein tau) cause frontotemporal dementia (FTD). MAPT mutations are associated with abnormal tau phosphorylation levels and accumulation of misfolded tau protein that can propagate between neurons ultimately leading to cell death (tauopathy). Recently, a p.A152T tau variant was identified as a risk factor for FTD, Alzheimer's disease, and synucleinopathies. Here we used induced pluripotent stem cells (iPSC) from a patient carrying this p.A152T variant to create a robust, functional cellular assay system for probing pathophysiological tau accumulation and phosphorylation. Using stably transduced iPSC-derived neural progenitor cells engineered to enable inducible expression of the pro-neural transcription factor Neurogenin 2 (Ngn2), we generated disease-relevant, cortical-like glutamatergic neurons in a scalable, high-throughput screening compatible format. Utilizing automated confocal microscopy, and an advanced image-processing pipeline optimized for analysis of morphologically complex human neuronal cultures, we report quantitative, subcellular localization-specific effects of multiple kinase inhibitors on tau, including ones under clinical investigation not previously reported to affect tau phosphorylation. These results demonstrate the potential for using patient iPSC-derived ex vivo models of tauopathy as genetically accurate, disease-relevant systems to probe tau biochemistry and support the discovery of novel therapeutics for tauopathies.


Assuntos
Glutamatos/metabolismo , Processamento de Imagem Assistida por Computador , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Neurônios/patologia , Proteômica , Tauopatias/patologia , Proteínas tau/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Piridinas/química , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
9.
J Am Chem Soc ; 132(47): 16962-76, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21067169

RESUMO

An aldol-based build/couple/pair (B/C/P) strategy was applied to generate a collection of stereochemically and skeletally diverse small molecules. In the build phase, a series of asymmetric syn- and anti-aldol reactions were performed to produce four stereoisomers of a Boc-protected γ-amino acid. In addition, both stereoisomers of O-PMB-protected alaninol were generated to provide a chiral amine coupling partner. In the couple step, eight stereoisomeric amides were synthesized by coupling the chiral acid and amine building blocks. The amides were subsequently reduced to generate the corresponding secondary amines. In the pair phase, three different reactions were employed to enable intramolecular ring-forming processes: nucleophilic aromatic substitution (S(N)Ar), Huisgen [3+2] cycloaddition, and ring-closing metathesis (RCM). Despite some stereochemical dependencies, the ring-forming reactions were optimized to proceed with good to excellent yields, providing a variety of skeletons ranging in size from 8- to 14-membered rings. Scaffolds resulting from the RCM pairing reaction were diversified on the solid phase to yield a 14 400-membered library of macrolactams. Screening of this library led to the discovery of a novel class of histone deacetylase inhibitors, which display mixed enzyme inhibition, and led to increased levels of acetylation in a primary mouse neuron culture. The development of stereo-structure/activity relationships was made possible by screening all 16 stereoisomers of the macrolactams produced through the aldol-based B/C/P strategy.


Assuntos
Aldeídos/química , Descoberta de Drogas/métodos , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/farmacologia , Animais , Produtos Biológicos/síntese química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Inibidores de Histona Desacetilases/química , Compostos Macrocíclicos/química , Camundongos , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , Especificidade por Substrato
10.
Mol Autism ; 11(1): 2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31921404

RESUMO

Background: Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder with frequent occurrence of epilepsy, autism spectrum disorder (ASD), intellectual disability (ID), and tumors in multiple organs. The aberrant activation of mTORC1 in TSC has led to treatment with mTORC1 inhibitor rapamycin as a lifelong therapy for tumors, but TSC-associated neurocognitive manifestations remain unaffected by rapamycin. Methods: Here, we generated patient-specific, induced pluripotent stem cells (iPSCs) from a TSC patient with a heterozygous, germline, nonsense mutation in exon 15 of TSC1 and established an isogenic set of heterozygous (Het), null and corrected wildtype (Corr-WT) iPSCs using CRISPR/Cas9-mediated gene editing. We differentiated these iPSCs into neural progenitor cells (NPCs) and examined neurodevelopmental phenotypes, signaling and changes in gene expression by RNA-seq. Results: Differentiated NPCs revealed enlarged cell size in TSC1-Het and Null NPCs, consistent with mTORC1 activation. TSC1-Het and Null NPCs also revealed enhanced proliferation and altered neurite outgrowth in a genotype-dependent manner, which was not reversed by rapamycin. Transcriptome analyses of TSC1-NPCs revealed differentially expressed genes that display a genotype-dependent linear response, i.e., genes upregulated/downregulated in Het were further increased/decreased in Null. In particular, genes linked to ASD, epilepsy, and ID were significantly upregulated or downregulated warranting further investigation. In TSC1-Het and Null NPCs, we also observed basal activation of ERK1/2, which was further activated upon rapamycin treatment. Rapamycin also increased MNK1/2-eIF4E signaling in TSC1-deficient NPCs. Conclusion: MEK-ERK and MNK-eIF4E pathways regulate protein translation, and our results suggest that aberrant translation distinct in TSC1/2-deficient NPCs could play a role in neurodevelopmental defects. Our data showing upregulation of these signaling pathways by rapamycin support a strategy to combine a MEK or a MNK inhibitor with rapamycin that may be superior for TSC-associated CNS defects. Importantly, our generation of isogenic sets of NPCs from TSC patients provides a valuable platform for translatome and large-scale drug screening studies. Overall, our studies further support the notion that early developmental events such as NPC proliferation and initial process formation, such as neurite number and length that occur prior to neuronal differentiation, represent primary events in neurogenesis critical to disease pathogenesis of neurodevelopmental disorders such as ASD.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Esclerose Tuberosa , Sistemas CRISPR-Cas , Códon sem Sentido , Edição de Genes , Mutação em Linhagem Germinativa , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Neurogênese , Fenótipo , RNA-Seq , Transdução de Sinais , Sirolimo , Proteína 1 do Complexo Esclerose Tuberosa/genética
11.
Cells ; 8(12)2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783699

RESUMO

Alterations in the autophagosomal-lysosomal pathway are a major pathophysiological feature of CLN3 disease, which is the most common form of childhood-onset neurodegeneration. Accumulating autofluorescent lysosomal storage material in CLN3 disease, consisting of dolichols, lipids, biometals, and a protein that normally resides in the mitochondria, subunit c of the mitochondrial ATPase, provides evidence that autophagosomal-lysosomal turnover of cellular components is disrupted upon loss of CLN3 protein function. Using a murine neuronal cell model of the disease, which accurately mimics the major gene defect and the hallmark features of CLN3 disease, we conducted an unbiased search for modifiers of autophagy, extending previous work by further optimizing a GFP-LC3 based assay and performing a high-content screen on a library of ~2000 bioactive compounds. Here we corroborate our earlier screening results and identify expanded, independent sets of autophagy modifiers that increase or decrease the accumulation of autophagosomes in the CLN3 disease cells, highlighting several pathways of interest, including the regulation of calcium signaling, microtubule dynamics, and the mevalonate pathway. Follow-up analysis on fluspirilene, nicardipine, and verapamil, in particular, confirmed activity in reducing GFP-LC3 vesicle burden, while also demonstrating activity in normalizing lysosomal positioning and, for verapamil, in promoting storage material clearance in CLN3 disease neuronal cells. This study demonstrates the potential for cell-based screening studies to identify candidate molecules and pathways for further work to understand CLN3 disease pathogenesis and in drug development efforts.


Assuntos
Autofagossomos/efeitos dos fármacos , Descoberta de Drogas/métodos , Fluspirileno/farmacologia , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Nicardipino/farmacologia , Verapamil/farmacologia , Animais , Autofagossomos/metabolismo , Autofagossomos/patologia , Autofagia/efeitos dos fármacos , Linhagem Celular , Mutação com Perda de Função , Glicoproteínas de Membrana/genética , Camundongos , Chaperonas Moleculares/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia
12.
Sci Transl Med ; 11(485)2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918111

RESUMO

Tau inclusions are a shared feature of many neurodegenerative diseases, among them frontotemporal dementia caused by tau mutations. Treatment approaches for these conditions include targeting posttranslational modifications of tau proteins, maintaining a steady-state amount of tau, and preventing its tendency to aggregate. We discovered a new regulatory pathway for tau degradation that operates through the farnesylated protein, Rhes, a GTPase in the Ras family. Here, we show that treatment with the farnesyltransferase inhibitor lonafarnib reduced Rhes and decreased brain atrophy, tau inclusions, tau sumoylation, and tau ubiquitination in the rTg4510 mouse model of tauopathy. In addition, lonafarnib treatment attenuated behavioral abnormalities in rTg4510 mice and reduced microgliosis in mouse brain. Direct reduction of Rhes in the rTg4510 mouse by siRNA reproduced the results observed with lonafarnib treatment. The mechanism of lonafarnib action mediated by Rhes to reduce tau pathology was shown to operate through activation of lysosomes. We finally showed in mouse brain and in human induced pluripotent stem cell-derived neurons a normal developmental increase in Rhes that was initially suppressed by tau mutations. The known safety of lonafarnib revealed in human clinical trials for cancer suggests that this drug could be repurposed for treating tauopathies.


Assuntos
Farnesiltranstransferase/antagonistas & inibidores , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Piperidinas/farmacologia , Proteólise/efeitos dos fármacos , Piridinas/farmacologia , RNA Interferente Pequeno/genética , Tauopatias/patologia , Pesquisa Translacional Biomédica , Proteínas tau/genética , Proteínas tau/metabolismo
13.
J Med Chem ; 62(21): 9600-9617, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31535859

RESUMO

Using structure-guided design, several cell based assays, and microdosed positron emission tomography (PET) imaging, we identified a series of highly potent, selective, and brain-penetrant oxazole-4-carboxamide-based inhibitors of glycogen synthase kinase-3 (GSK-3). An isotopologue of our first-generation lead, [3H]PF-367, demonstrates selective and specific target engagement in vitro, irrespective of the activation state. We discovered substantial ubiquitous GSK-3-specific radioligand binding in Tg2576 Alzheimer's disease (AD), suggesting application for these compounds in AD diagnosis and identified [11C]OCM-44 as our lead GSK-3 radiotracer, with optimized brain uptake by PET imaging in nonhuman primates. GSK-3ß-isozyme selectivity was assessed to reveal OCM-51, the most potent (IC50 = 0.030 nM) and selective (>10-fold GSK-3ß/GSK-3α) GSK-3ß inhibitor known to date. Inhibition of CRMP2T514 and tau phosphorylation, as well as favorable therapeutic window against WNT/ß-catenin signaling activation, was observed in cells.


Assuntos
Encéfalo/metabolismo , Descoberta de Drogas , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Tomografia por Emissão de Pósitrons/métodos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Domínio Catalítico , Glicogênio Sintase Quinase 3 beta/química , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Neuroimagem , Oxazóis/química , Oxazóis/metabolismo , Oxazóis/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Triazóis/química , Triazóis/metabolismo , Triazóis/farmacologia
14.
Transl Psychiatry ; 8(1): 135, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30046097

RESUMO

The ankyrin 3 gene (ANK3) is a well-established risk gene for psychiatric illness, but the mechanisms underlying its pathophysiology remain elusive. We examined the molecular effects of disrupting brain-specific Ank3 isoforms in mouse and neuronal model systems. RNA sequencing of hippocampus from Ank3+/- and Ank3+/+ mice identified altered expression of 282 genes that were enriched for microtubule-related functions. Results were supported by increased expression of microtubule end-binding protein 3 (EB3), an indicator of microtubule dynamics, in Ank3+/- mouse hippocampus. Live-cell imaging of EB3 movement in primary neurons from Ank3+/- mice revealed impaired elongation of microtubules. Using a CRISPR-dCas9-KRAB transcriptional repressor in mouse neuro-2a cells, we determined that repression of brain-specific Ank3 increased EB3 expression, decreased tubulin acetylation, and increased the soluble:polymerized tubulin ratio, indicating enhanced microtubule dynamics. These changes were rescued by inhibition of glycogen synthase kinase 3 (GSK3) with lithium or CHIR99021, a highly selective GSK3 inhibitor. Brain-specific Ank3 repression in neuro-2a cells increased GSK3 activity (reduced inhibitory phosphorylation) and elevated collapsin response mediator protein 2 (CRMP2) phosphorylation, a known GSK3 substrate and microtubule-binding protein. Pharmacological inhibition of CRMP2 activity attenuated the rescue of EB3 expression and tubulin polymerization in Ank3-repressed cells by lithium or CHIR99021, suggesting microtubule instability induced by Ank3 repression is dependent on CRMP2 activity. Taken together, our data indicate that ANK3 functions in neuronal microtubule dynamics through GSK3 and its downstream substrate CRMP2. These findings reveal cellular and molecular mechanisms underlying brain-specific ANK3 disruption that may be related to its role in psychiatric illness.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Compostos de Lítio/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Animais , Anquirinas/genética , Feminino , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/metabolismo , Neurônios/metabolismo , Fosforilação , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos
15.
Nat Commun ; 8(1): 1659, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162813

RESUMO

The role of Arc in synaptic plasticity and memory consolidation has been investigated for many years with recent evidence that defects in the expression or activity of this immediate-early gene may also contribute to the pathophysiology of brain disorders including schizophrenia and fragile X syndrome. These results bring forward the concept that reversing Arc abnormalities could provide an avenue to improve cognitive or neurological impairments in different disease contexts, but how to achieve this therapeutic objective has remained elusive. Here, we present results from a chemogenomic screen that probed a mechanistically diverse library of small molecules for modulators of BDNF-induced Arc expression in primary cortical neurons. This effort identified compounds with a range of influences on Arc, including promoting its acetylation-a previously uncharacterized post-translational modification of this protein. Together, our data provide insights into the control of Arc that could be targeted to harness neuroplasticity for clinical applications.


Assuntos
Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Lisina/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Acetilação , Motivos de Aminoácidos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas do Citoesqueleto/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Neurônios/química , Neurônios/metabolismo , Estabilidade Proteica
16.
Cell Chem Biol ; 24(7): 892-906.e5, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28712747

RESUMO

Frontotemporal dementia (FTD) arises from neurodegeneration in the frontal, insular, and anterior temporal lobes. Autosomal dominant causes of FTD include heterozygous mutations in the GRN gene causing haploinsufficiency of progranulin (PGRN) protein. Recently, histone deacetylase (HDAC) inhibitors have been identified as enhancers of PGRN expression, although the mechanisms through which GRN is epigenetically regulated remain poorly understood. Using a chemogenomic toolkit, including optoepigenetic probes, we show that inhibition of class I HDACs is sufficient to upregulate PGRN in human neurons, and only inhibitors with apparent fast binding to their target HDAC complexes are capable of enhancing PGRN expression. Moreover, we identify regions in the GRN promoter in which elevated H3K27 acetylation and transcription factor EB (TFEB) occupancy correlate with HDAC-inhibitor-mediated upregulation of PGRN. These findings have implications for epigenetic and cis-regulatory mechanisms controlling human GRN expression and may advance translational efforts to develop targeted therapeutics for treating PGRN-deficient FTD.


Assuntos
Histona Desacetilases/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Acetilação/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Cultivadas , Epigênese Genética , Demência Frontotemporal/tratamento farmacológico , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Haploinsuficiência/genética , Heterozigoto , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/química , Histona Desacetilases/genética , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Indóis/química , Indóis/farmacologia , Indóis/uso terapêutico , Células-Tronco Pluripotentes Induzidas/citologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Luz , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Progranulinas , Regiões Promotoras Genéticas , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Interferência de RNA , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação
17.
J Mol Histol ; 35(4): 389-95, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15503812

RESUMO

Fragile X syndrome is due to the absence of the fragile X mental retardation protein (FMRP). Patients are mentally retarded and show physical as well as behavioural abnormalities. Loss of protein in the neurons results in changes of dendrite architecture, and impairment of the pruning process has been indicated. Apart from some minor differences, no severe morphological changes have been observed in the brain. Until now, no therapy is available for fragile X patients. Recently it has been reported, that a protein transduction domain (TAT) is able to deliver macromolecules into cells and even into the brain when fused to the protein in question. Upon production of a TAT-FMRP fusion protein in a baculovirus-expression system, we used immunohistochemistry to verify TAT-mediated uptake of FMRP in fibroblasts. However, uptake efficiency and velocity was lower than expected. Neuronal uptake was highly inefficient and the fusion protein demonstrated toxicity.


Assuntos
Fibroblastos/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Produtos do Gene tat/farmacologia , Proteínas do Tecido Nervoso/farmacologia , Neurônios/metabolismo , Proteínas de Ligação a RNA/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Células COS , Cricetinae , Fibroblastos/patologia , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/patologia , Produtos do Gene tat/genética , Produtos do Gene tat/toxicidade , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Estrutura Terciária de Proteína/genética , Transporte Proteico/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética
18.
J Med Chem ; 57(19): 7999-8009, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25203558

RESUMO

Epigenetic enzymes are now targeted to treat the underlying gene expression dysregulation that contribute to disease pathogenesis. Histone deacetylases (HDACs) have shown broad potential in treatments against cancer and emerging data supports their targeting in the context of cardiovascular disease and central nervous system dysfunction. Development of a molecular agent for non-invasive imaging to elucidate the distribution and functional roles of HDACs in humans will accelerate medical research and drug discovery in this domain. Herein, we describe the synthesis and validation of an HDAC imaging agent, [(11)C]6. Our imaging results demonstrate that this probe has high specificity, good selectivity, and appropriate kinetics and distribution for imaging HDACs in the brain, heart, kidney, pancreas, and spleen. Our findings support the translational potential for [(11)C]6 for human epigenetic imaging.


Assuntos
Encéfalo/enzimologia , Histona Desacetilases/análise , Animais , Autorradiografia , Relação Dose-Resposta a Droga , Epigenômica , Inibidores de Histona Desacetilases/farmacologia , Humanos , Rim/enzimologia , Masculino , Miocárdio/enzimologia , Papio , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley
19.
PLoS One ; 8(8): e71323, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967191

RESUMO

Psychiatric diseases, including schizophrenia, bipolar disorder and major depression, are projected to lead global disease burden within the next decade. Pharmacotherapy, the primary--albeit often ineffective--treatment method, has remained largely unchanged over the past 50 years, highlighting the need for novel target discovery and improved mechanism-based treatments. Here, we examined in wild type mice the impact of chronic, systemic treatment with Compound 60 (Cpd-60), a slow-binding, benzamide-based inhibitor of the class I histone deacetylase (HDAC) family members, HDAC1 and HDAC2, in mood-related behavioral assays responsive to clinically effective drugs. Cpd-60 treatment for one week was associated with attenuated locomotor activity following acute amphetamine challenge. Further, treated mice demonstrated decreased immobility in the forced swim test. These changes are consistent with established effects of clinical mood stabilizers and antidepressants, respectively. Whole-genome expression profiling of specific brain regions (prefrontal cortex, nucleus accumbens, hippocampus) from mice treated with Cpd-60 identified gene expression changes, including a small subset of transcripts that significantly overlapped those previously reported in lithium-treated mice. HDAC inhibition in brain was confirmed by increased histone acetylation both globally and, using chromatin immunoprecipitation, at the promoter regions of upregulated transcripts, a finding consistent with in vivo engagement of HDAC targets. In contrast, treatment with suberoylanilide hydroxamic acid (SAHA), a non-selective fast-binding, hydroxamic acid HDAC 1/2/3/6 inhibitor, was sufficient to increase histone acetylation in brain, but did not alter mood-related behaviors and had dissimilar transcriptional regulatory effects compared to Cpd-60. These results provide evidence that selective inhibition of HDAC1 and HDAC2 in brain may provide an epigenetic-based target for developing improved treatments for mood disorders and other brain disorders with altered chromatin-mediated neuroplasticity.


Assuntos
Afeto/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/antagonistas & inibidores , Acetilação/efeitos dos fármacos , Animais , Benzamidas/química , Benzamidas/farmacologia , Encéfalo/citologia , Encéfalo/metabolismo , Cromatina/genética , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/química , Histonas/metabolismo , Lítio/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
20.
Neuropharmacology ; 64: 81-96, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22771460

RESUMO

Long-term memory formation is known to be critically dependent upon de novo gene expression in the brain. As a consequence, pharmacological enhancement of the transcriptional processes mediating long-term memory formation provides a potential therapeutic strategy for cognitive disorders involving aberrant neuroplasticity. Here we focus on the identification and characterization of small molecule inhibitors of histone deacetylases (HDACs) as enhancers of CREB (cAMP response element-binding protein)-regulated transcription and modulators of chromatin-mediated neuroplasticity. Using a CREB reporter gene cell line, we screened a library of small molecules structurally related to known HDAC inhibitors leading to the identification of a probe we termed crebinostat that produced robust activation of CREB-mediated transcription. Further characterization of crebinostat revealed its potent inhibition of the deacetylase activity of recombinant class I HDACs 1, 2, 3, and class IIb HDAC6, with weaker inhibition of the class I HDAC8 and no significant inhibition of the class IIa HDACs 4, 5, 7, and 9. In cultured mouse primary neurons, crebinostat potently induced acetylation of both histone H3 and histone H4 as well as enhanced the expression of the CREB target gene Egr1 (early growth response 1). Using a hippocampus-dependent, contextual fear conditioning paradigm, mice systemically administered crebinostat for a ten day time period exhibited enhanced memory. To gain insight into the molecular mechanisms of memory enhancement by HDAC inhibitors, whole genome transcriptome profiling of cultured mouse primary neurons treated with crebinostat, combined with bioinformatic analyses of CREB-target genes, was performed revealing a highly connected protein-protein interaction network reflecting modules of genes important to synaptic structure and plasticity. Consistent with these findings, crebinostat treatment increased the density of synapsin-1 punctae along dendrites in cultured neurons. Finally, crebinostat treatment of cultured mouse primary neurons was found to upregulate Bdnf (brain-derived neurotrophic factor) and Grn (granulin) and downregulate Mapt (tau) gene expression-genes implicated in aging-related cognitive decline and cognitive disorders. Taken together, these results demonstrate that crebinostat provides a novel probe to modulate chromatin-mediated neuroplasticity and further suggests that pharmacological optimization of selective of HDAC inhibitors may provide an effective therapeutic approach for human cognitive disorders. This article is part of a Special Issue entitled 'Cognitive Enhancers'.


Assuntos
Compostos de Bifenilo/farmacologia , Descoberta de Drogas/métodos , Inibidores de Histona Desacetilases/farmacologia , Hidrazinas/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nootrópicos/farmacologia , Prosencéfalo/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Compostos de Bifenilo/sangue , Compostos de Bifenilo/metabolismo , Compostos de Bifenilo/farmacocinética , Células Cultivadas , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Genes Reporter/efeitos dos fármacos , Inibidores de Histona Desacetilases/sangue , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacocinética , Histona Desacetilases/química , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Hidrazinas/sangue , Hidrazinas/metabolismo , Hidrazinas/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Nootrópicos/sangue , Nootrópicos/metabolismo , Nootrópicos/farmacocinética , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA