Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 845
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cancer Metastasis Rev ; 43(1): 457-479, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38227149

RESUMO

Epithelial-mesenchymal transition (EMT) is a complicated molecular process that governs cellular shape and function changes throughout tissue development and embryogenesis. In addition, EMT contributes to the development and spread of tumors. Expanding and degrading the surrounding microenvironment, cells undergoing EMT move away from the main location. On the basis of the expression of fibroblast-specific protein-1 (FSP1), fibroblast growth factor (FGF), collagen, and smooth muscle actin (-SMA), the mesenchymal phenotype exhibited in fibroblasts is crucial for promoting EMT. While EMT is not entirely reliant on its regulators like ZEB1/2, Twist, and Snail proteins, investigation of upstream signaling (like EGF, TGF-ß, Wnt) is required to get a more thorough understanding of tumor EMT. Throughout numerous cancers, connections between tumor epithelial and fibroblast cells that influence tumor growth have been found. The significance of cellular crosstalk stems from the fact that these events affect therapeutic response and disease prognosis. This study examines how classical EMT signals emanating from various cancer cells interfere to tumor metastasis, treatment resistance, and tumor recurrence.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Humanos , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias/metabolismo , Transdução de Sinais , Fenótipo , Resistência a Medicamentos , Linhagem Celular Tumoral , Microambiente Tumoral
2.
PLoS Pathog ; 19(5): e1011406, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37200384

RESUMO

Influenza A virus (IAV) H1N1 infection is a constant threat to human health and it remains so due to the lack of an effective treatment. Since melatonin is a potent antioxidant and anti-inflammatory molecule with anti-viral action, in the present study we used melatonin to protect against H1N1 infection under in vitro and in vivo conditions. The death rate of the H1N1-infected mice was negatively associated with the nose and lung tissue local melatonin levels but not with serum melatonin concentrations. The H1N1-infected AANAT-/- melatonin-deficient mice had a significantly higher death rate than that of the WT mice and melatonin administration significantly reduced the death rate. All evidence confirmed the protective effects of melatonin against H1N1 infection. Further study identified that the mast cells were the primary targets of melatonin action, i.e., melatonin suppresses the mast cell activation caused by H1N1 infection. The molecular mechanisms involved melatonin down-regulation of gene expression for the HIF-1 pathway and inhibition of proinflammatory cytokine release from mast cells; this resulted in a reduction in the migration and activation of the macrophages and neutrophils in the lung tissue. This pathway was mediated by melatonin receptor 2 (MT2) since the MT2 specific antagonist 4P-PDOT significantly blocked the effects of melatonin on mast cell activation. Via targeting mast cells, melatonin suppressed apoptosis of alveolar epithelial cells and the lung injury caused by H1N1 infection. The findings provide a novel mechanism to protect against the H1N1-induced pulmonary injury, which may better facilitate the progress of new strategies to fight H1N1 infection or other IAV viral infections.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Lesão Pulmonar , Melatonina , Infecções por Orthomyxoviridae , Humanos , Animais , Camundongos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Mastócitos/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Síndrome da Liberação de Citocina/metabolismo , Pulmão
3.
Am J Pathol ; 194(6): 912-926, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38417695

RESUMO

This study was designed to discern the effect of heavy scavenger metallothionein on glutathione (GSH) deprivation-evoked cardiac anomalies and mechanisms involved with an emphasis on ferroptosis. Wild-type and cardiac metallothionein transgenic mice received GSH synthase inhibitor buthionine sulfoximine (BSO; 30 mmol/L in drinking water) for 14 days before assessment of myocardial morphology and function. BSO evoked cardiac remodeling and contractile anomalies, including cardiac hypertrophy, interstitial fibrosis, enlarged left ventricular chambers, deranged ejection fraction, fraction shortening, cardiomyocyte contractile capacity, intracellular Ca2+ handling, sarcoplasmic reticulum Ca2+ reuptake, loss of mitochondrial integrity (mitochondrial swelling, loss of aconitase activity), mitochondrial energy deficit, carbonyl damage, lipid peroxidation, ferroptosis, and apoptosis. Metallothionein itself did not affect myocardial morphology and function, although it mitigated BSO-provoked myocardial anomalies, loss of mitochondrial integrity and energy, and ferroptosis. Immunoblotting revealed down-regulated sarco(endo)plasmic reticulum Ca2+-ATPase 2a, glutathione peroxidase 4, ferroptosis-suppressing CDGSH iron-sulfur domain 1 (CISD1), and mitochondrial regulating glycogen synthase kinase-3ß phosphorylation with elevated p53, myosin heavy chain-ß isozyme, IκB phosphorylation, and solute carrier family 7 member 11 (SLC7A11) as well as unchanged SLC39A1, SLC1A5, and ferroptosis-suppressing protein 1 following BSO challenge, all of which, except glutamine transporter SLC7A11 and p53, were abrogated by metallothionein. Inhibition of CISD1 using pioglitazone nullified GSH-offered benefit against BSO-induced cardiomyocyte ferroptosis and contractile and intracellular Ca2+ derangement. Taken together, these findings support a regulatory modality for CISD1 in the impedance of ferroptosis in metallothionein-offered protection against GSH depletion-evoked cardiac aberration.


Assuntos
Cardiomiopatias , Ferroptose , Glutationa , Metalotioneína , Camundongos Transgênicos , Animais , Ferroptose/efeitos dos fármacos , Metalotioneína/metabolismo , Camundongos , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Masculino , Butionina Sulfoximina/farmacologia
4.
Rev Med Virol ; 34(1): e2499, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38126924

RESUMO

This review assesses the antiviral potential of melatonin through comprehensive analysis of studies across human subjects, animal models, cell cultures, and in-silico simulations. The search strategy targeted relevant research until 22 June 2023, resulting in 20 primary studies after screening and deduplication. The findings highlight strong evidence supporting antiviral properties of melatonin. In silico studies identify melatonin as a candidate against SARS-CoV-2, reducing cytokine storm-related respiratory responses. Cell culture experiments reveal its multifaceted effects on different viruses including respiratory syncytial virus, anti-dengue virus, transmissible gastroenteritis virus, and encephalomyocarditis virus. Animal studies show melatonin reduces mortality and viral replication in various infections such as Venezuelan equine encephalomyelitis and COVID-19. Clinical trials show how it could be evaluated, but with no conclusive evidence of efficacy and safety so far from large, double-blind placebo-controlled trials. These insights showcase the potential of melatonin as a versatile antiviral agent with immunomodulatory, antioxidant, anti-inflammatory and antiviral properties. In summary, our review highlights melatonin's promising antiviral properties across diverse settings. Melatonin's immunomodulatory and antiviral potential makes it a compelling candidate for further investigation, emphasising the need for rigorous clinical trials to establish its safety and efficacy against viral infections.


Assuntos
COVID-19 , Melatonina , Viroses , Animais , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Melatonina/farmacologia , Melatonina/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Viroses/tratamento farmacológico
5.
J Cell Physiol ; : e31383, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039752

RESUMO

The endoplasmic reticulum (ER) is crucial for protein quality control, and disruptions in its function can lead to various diseases. ER stress triggers an adaptive response called the unfolded protein response (UPR), which can either restore cellular homeostasis or induce cell death. Melatonin, a safe and multifunctional compound, shows promise in controlling ER stress and could be a valuable therapeutic agent for managing the UPR. By regulating ER and mitochondrial functions, melatonin helps maintain cellular homeostasis via reduction of oxidative stress, inflammation, and apoptosis. Melatonin can directly or indirectly interfere with ER-associated sensors and downstream targets of the UPR, impacting cell death, autophagy, inflammation, molecular repair, among others. Crucially, this review explores the mechanistic role of melatonin on ER stress in various diseases including liver damage, neurodegeneration, reproductive disorders, pulmonary disease, cardiomyopathy, insulin resistance, renal dysfunction, and cancer. Interestingly, while it alleviates the burden of ER stress in most pathological contexts, it can paradoxically stimulate ER stress in cancer cells, highlighting its intricate involvement in cellular homeostasis. With numerous successful studies using in vivo and in vitro models, the continuation of clinical trials is imperative to fully explore melatonin's therapeutic potential in these conditions.

6.
J Pineal Res ; 76(1): e12922, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37909654

RESUMO

This was a prospective, randomized, double-blind, single-center placebo-controlled trial to assess the efficacy and safety of melatonin as an add-on treatment for infantile epileptic spasms syndrome (IESS). Participants aged 3 months to 2 years with a primary diagnosis of IESS were recruited and assigned to two groups in a 1:1 ratio. Both treatment groups received a combination of adrenocorticotrophic hormone (ACTH) and magnesium sulfate (MgSO4 ) for 2 weeks, and the treatment group also received melatonin (3 mg) between 20:00 and 21:00 daily, 0.5-1 h before bedtime. The study's primary endpoint was the average reduction rate in spasm frequency assessed by seizure diaries. Secondary endpoints included assessment of the response rate, EEG hypsarrhythmia (Kramer score), and psychomotor development (Denver Developmental Screening Test, DDST). Sleep quality was assessed by using the Brief Infant Sleep Questionnaire (BISQ), the Infant Sleep Assessment Scale (ISAS), and actigraphy. Safety parameters were also evaluated. Statistical analyses were conducted on intention-to-treat and per-protocol populations. The trial is registered at Clinicaltrials.gov (ChiCTR2000036208). Out of 119 screened patients, 70 were randomized and 66 completed treatments. In the intention-to-treat population, there were no significant differences in the average percentage reduction of spasm frequency (median [interquartile range, IQR: Q3-Q1], 100% [46.7%] vs. 66.7% [55.3%], p = .288), the 3-day response rate (51.4% vs. 37.1%, p = .229), the 28-day response rate (42.9% vs. 28.6%, p = .212), EEG Kramer scores (2 [3.5] vs. 2 [3], p = .853), or DDST comprehensive months (5 [2.5] vs. 6 [6], p = .239) between the melatonin (n = 35) and placebo (n = 35) groups. However, caregivers reported improved sleep quality after melatonin treatment, with 85.7% reporting regular sleep compared to 42.9% with placebo (42.9%, p < .001). The melatonin group had lower ISAS scores in 4-11-month-old patients compared to the placebo (mean ± SD, 29.3 ± 4.4 vs. 35.2 ± 5.9, p < .001). Moreover, the median (IQR) value of sleep-onset latency was shortened by 6.0 (24.5) min after melatonin treatment, while that in the placebo group was extended by 3.0 (22.0) min (p = .030). The serum melatonin (6:00 h) level (pg/mL) of the children in the melatonin group after treatment was significantly higher than in the placebo group (median [IQR], 84.8 [142] vs. 17.5 [37.6], p < .001). No adverse effects related to melatonin were observed in the study, and there were no significant differences in adverse effects between the melatonin and placebo groups. Although not statistically significant, the results of this randomized clinical trial proved that melatonin supplementation, as an add-on treatment, can improve spasm control rate in the treatment of IESS. For IESS children treated with ACTH, the addition of melatonin was found to improve sleep quality, shorten sleep onset latency, and increase blood melatonin levels. Moreover, it was observed to be a safe treatment option.


Assuntos
Melatonina , Criança , Humanos , Lactente , Melatonina/uso terapêutico , Estudos Prospectivos , Hormônio Adrenocorticotrópico/uso terapêutico , Método Duplo-Cego , Espasmo/tratamento farmacológico , Suplementos Nutricionais
7.
Acta Pharmacol Sin ; 45(1): 87-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37679644

RESUMO

Recent evidence shows a close link between Parkinson's disease (PD) and cardiac dysfunction with limited treatment options. Mitophagy plays a crucial role in the control of mitochondrial quantity, metabolic reprogramming and cell differentiation. Mutation of the mitophagy protein Parkin is directly associated with the onset of PD. Parkin-independent receptor-mediated mitophagy is also documented such as BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and FUN14 domain containing 1 (FUNDC1) for receptor-mediated mitophagy. In this study we investigated cardiac function and mitophagy including FUNDC1 in PD patients and mouse models, and evaluated the therapeutic potential of a SGLT2 inhibitor empagliflozin. MPTP-induced PD model was established. PD patients and MPTP mice not only displayed pronounced motor defects, but also low plasma FUNDC1 levels, as well as cardiac ultrastructural and geometric anomalies (cardiac atrophy, interstitial fibrosis), functional anomalies (reduced E/A ratio, fractional shortening, ejection fraction, cardiomyocyte contraction) and mitochondrial injury (ultrastructural damage, UCP2, PGC1α, elevated mitochondrial Ca2+ uptake proteins MCU and VDAC1, and mitochondrial apoptotic protein calpain), dampened autophagy, FUNDC1 mitophagy and apoptosis. By Gene set enrichment analysis (GSEA), we found overtly altered glucose transmembrane transport in the midbrains of MPTP-treated mice. Intriguingly, administration of SGLT2 inhibitor empagliflozin (10 mg/kg, i.p., twice per week for 2 weeks) in MPTP-treated mice significantly ameliorated myocardial anomalies (with exception of VDAC1), but did not reconcile the motor defects or plasma FUNDC1. FUNDC1 global knockout (FUNDC1-/- mice) did not elicit any phenotype on cardiac geometry or function in the absence or presence of MPTP insult, but it nullified empagliflozin-caused cardioprotection against MPTP-induced cardiac anomalies including remodeling (atrophy and fibrosis), contractile dysfunction, Ca2+ homeostasis, mitochondrial (including MCU, mitochondrial Ca2+ overload, calpain, PARP1) and apoptotic anomalies. In neonatal and adult cardiomyocytes, treatment with PD neurotoxin preformed fibrils of α-synuclein (PFF) caused cytochrome c release and cardiomyocyte mechanical defects. These effects were mitigated by empagliflozin (10 µM) or MCU inhibitor Ru360 (10 µM). MCU activator kaempferol (10 µM) or calpain activator dibucaine (500 µM) nullified the empagliflozin-induced beneficial effects. These results suggest that empagliflozin protects against PD-induced cardiac anomalies, likely through FUNDC1-mediated regulation of mitochondrial integrity.


Assuntos
Doença de Parkinson , Inibidores do Transportador 2 de Sódio-Glicose , Adulto , Humanos , Camundongos , Animais , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Calpaína , Remodelação Ventricular , Proteínas Mitocondriais/metabolismo , Ubiquitina-Proteína Ligases , Atrofia , Fibrose , Proteínas de Membrana/metabolismo
8.
Cell Mol Life Sci ; 80(4): 88, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36917314

RESUMO

The brain lacks a classic lymphatic drainage system. How it is cleansed of damaged proteins, cellular debris, and molecular by-products has remained a mystery for decades. Recent discoveries have identified a hybrid system that includes cerebrospinal fluid (CSF)-filled perivascular spaces and classic lymph vessels in the dural covering of the brain and spinal cord that functionally cooperate to remove toxic and non-functional trash from the brain. These two components functioning together are referred to as the glymphatic system. We propose that the high levels of melatonin secreted by the pineal gland directly into the CSF play a role in flushing pathological molecules such as amyloid-ß peptide (Aß) from the brain via this network. Melatonin is a sleep-promoting agent, with waste clearance from the CNS being highest especially during slow wave sleep. Melatonin is also a potent and versatile antioxidant that prevents neural accumulation of oxidatively-damaged molecules which contribute to neurological decline. Due to its feedback actions on the suprachiasmatic nucleus, CSF melatonin rhythm functions to maintain optimal circadian rhythmicity, which is also critical for preserving neurocognitive health. Melatonin levels drop dramatically in the frail aged, potentially contributing to neurological failure and dementia. Melatonin supplementation in animal models of Alzheimer's disease (AD) defers Aß accumulation, enhances its clearance from the CNS, and prolongs animal survival. In AD patients, preliminary data show that melatonin use reduces neurobehavioral signs such as sundowning. Finally, melatonin controls the mitotic activity of neural stem cells in the subventricular zone, suggesting its involvement in neuronal renewal.


Assuntos
Envelhecimento , Encéfalo , Sistema Glinfático , Melatonina , Sono , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Melatonina/líquido cefalorraquidiano , Humanos
9.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732075

RESUMO

Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021-2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.


Assuntos
Melanoma , Melatonina , Sericinas , Cicatrização , Melatonina/uso terapêutico , Melatonina/farmacologia , Humanos , Cicatrização/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Animais , Sericinas/farmacologia , Sericinas/uso terapêutico , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
10.
Front Neuroendocrinol ; 66: 100978, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35033557

RESUMO

Sleep and the circadian clock are intertwined and have persisted throughout history. The suprachiasmatic nucleus (SCN) orchestrates sleep by controlling circadian (Process C) and homeostatic (Process S) activities. As a "hand" on the endogenous circadian clock, melatonin is critical for sleep regulation. Light serves as a cue for sleep/wake control by activating retino-recipient cells in the SCN and subsequently suppressing melatonin. Clock genes are the molecular timekeepers that keep the 24 h cycle in place. Two main sleep and behavioural disorder diagnostic manuals have now officially recognised the importance of these processes for human health and well-being. The body's ability to respond to daily demands with the least amount of effort is maximised by carefully timing and integrating all components of sleep and waking. In the brain, the organization of timing is essential for optimal brain physiology.


Assuntos
Relógios Circadianos , Melatonina , Ritmo Circadiano/fisiologia , Humanos , Sono/fisiologia , Núcleo Supraquiasmático/fisiologia
11.
Osteoporos Int ; 34(10): 1677-1701, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37393580

RESUMO

PURPOSE: Bone diseases account for an enormous cost burden on health systems. Bone disorders are considered as age-dependent diseases. The aging of world population has encouraged scientists to further explore the most effective preventive modalities and therapeutic strategies to overcome and reduce the high cost of bone disorders. Herein, we review the current evidence of melatonin's therapeutic effects on bone-related diseases. METHODS: This review summarized evidences from in vitro, in vivo, and clinical studies regarding the effects of melatonin on bone-related diseases, with a focus on the molecular mechanisms. Electronically, Scopus and MEDLINE®/PubMed databases were searched for articles published on melatonin and bone-related diseases from inception to June 2023. RESULTS: The findings demonstrated that melatonin has beneficial effect in bone- and cartilage-related disorders such as osteoporosis, bone fracture healing, osteoarthritis, and rheumatoid arthritis, in addition to the control of sleep and circadian rhythms. CONCLUSION: A number of animal and clinical studies have indicated that various biological effects of melatonin may suggest this molecule as an effective therapeutic agent for controlling, diminishing, or suppressing bone-related disorders. Therefore, further clinical studies are required to clarify whether melatonin can be effective in patients with bone-related diseases.


Assuntos
Melatonina , Osteoporose , Animais , Melatonina/farmacologia , Melatonina/uso terapêutico , Osteoporose/tratamento farmacológico , Ritmo Circadiano , Sono , Osso e Ossos
12.
Cell Commun Signal ; 21(1): 33, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759799

RESUMO

Combined chemotherapy is a treatment method based on the simultaneous use of two or more therapeutic agents; it is frequently necessary to produce a more effective treatment for cancer patients. Such combined treatments often improve the outcomes over that of the monotherapy approach, as the drugs synergistically target critical cell signaling pathways or work independently at different oncostatic sites. A better prognosis has been reported in patients treated with combination therapy than in patients treated with single drug chemotherapy. In recent decades, 5-fluorouracil (5-FU) has become one of the most widely used chemotherapy agents in cancer treatment. This medication, which is soluble in water, is used as the first line of anti-neoplastic agent in the treatment of several cancer types including breast, head and neck, stomach and colon cancer. Within the last three decades, many studies have investigated melatonin as an anti-cancer agent; this molecule exhibits various functions in controlling the behavior of cancer cells, such as inhibiting cell growth, inducing apoptosis, and inhibiting invasion. The aim of this review is to comprehensively evaluate the role of melatonin as a complementary agent with 5-FU-based chemotherapy for cancers. Additionally, we identify the potential common signaling pathways by which melatonin and 5-FU interact to enhance the efficacy of the combined therapy. Video abstract.


Assuntos
Antineoplásicos , Neoplasias do Colo , Melatonina , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Melatonina/farmacologia , Melatonina/uso terapêutico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Apoptose
13.
J Pineal Res ; 74(3): e12861, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36750349

RESUMO

Melatonin participates in plant growth and development and biotic and abiotic stress responses. Histone acetylation regulates many plant biological processes via transcriptional reprogramming. However, the direct relationship between melatonin and histone acetylation in plant disease resistance remains unclear. In this study, we identified cassava bacterial blight (CBB) responsive histone deacetylase 9 (HDA9), which negatively regulated disease resistance to CBB by reducing melatonin content. In addition, exogenous melatonin alleviated disease sensitivity of MeHDA9 overexpressed plants to CBB. Importantly, MeHDA9 inhibited the expression of melatonin biosynthetic genes through decreasing lysine 5 of histone 4 (H4K5) acetylation at the promoter regions of melatonin biosynthetic genes, thereby modulating melatonin accumulation in cassava. Furthermore, protein phosphatase 2C 12 (MePP2C12) interacted with MeHDA9 in vivo and in vitro, and it was involved in MeHDA9-mediated disease resistance via melatonin biosynthetic pathway. In summary, this study highlights the direct interaction between histone deacetylation and melatonin biosynthetic genes in cassava disease resistance via histone deacetylation, providing new insights into the genetic improvement of disease resistance via epigenetic regulation of melatonin level in tropical crops.


Assuntos
Manihot , Melatonina , Melatonina/metabolismo , Histonas/genética , Histonas/metabolismo , Manihot/genética , Manihot/metabolismo , Resistência à Doença/genética , Epigênese Genética , Plantas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Cell Mol Life Sci ; 79(3): 143, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35187603

RESUMO

Numerous pharmaceutical drugs have been repurposed for use as treatments for COVID-19 disease. These drugs have not consistently demonstrated high efficacy in preventing or treating this serious condition and all have side effects to differing degrees. We encourage the continued consideration of the use of the antioxidant and anti-inflammatory agent, melatonin, as a countermeasure to a SARS-CoV-2 infection. More than 140 scientific publications have identified melatonin as a likely useful agent to treat this disease. Moreover, the publications cited provide the rationale for the use of melatonin as a prophylactic agent against this condition. Melatonin has pan-antiviral effects and it diminishes the severity of viral infections and reduces the death of animals infected with numerous different viruses, including three different coronaviruses. Network analyses, which compared drugs used to treat SARS-CoV-2 in humans, also predicted that melatonin would be the most effective agent for preventing/treating COVID-19. Finally, when seriously infected COVID-19 patients were treated with melatonin, either alone or in combination with other medications, these treatments reduced the severity of infection, lowered the death rate, and shortened the duration of hospitalization. Melatonin's ability to arrest SARS-CoV-2 infections may reduce health care exhaustion by limiting the need for hospitalization. Importantly, melatonin has a high safety profile over a wide range of doses and lacks significant toxicity. Some molecular processes by which melatonin resists a SARS-CoV-2 infection are summarized. The authors believe that all available, potentially beneficial drugs, including melatonin, that lack toxicity should be used in pandemics such as that caused by SARS-CoV-2.


Assuntos
Antioxidantes/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Melatonina/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Humanos
15.
Int J Mol Sci ; 24(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36982909

RESUMO

The swift rise in acceptance of molecular principles defining phase separation by a broad array of scientific disciplines is shadowed by increasing discoveries linking phase separation to pathological aggregations associated with numerous neurodegenerative disorders, including Alzheimer's disease, that contribute to dementia. Phase separation is powered by multivalent macromolecular interactions. Importantly, the release of water molecules from protein hydration shells into bulk creates entropic gains that promote phase separation and the subsequent generation of insoluble cytotoxic aggregates that drive healthy brain cells into diseased states. Higher viscosity in interfacial waters and limited hydration in interiors of biomolecular condensates facilitate phase separation. Light, water, and melatonin constitute an ancient synergy that ensures adequate protein hydration to prevent aberrant phase separation. The 670 nm visible red wavelength found in sunlight and employed in photobiomodulation reduces interfacial and mitochondrial matrix viscosity to enhance ATP production via increasing ATP synthase motor efficiency. Melatonin is a potent antioxidant that lowers viscosity to increase ATP by scavenging excess reactive oxygen species and free radicals. Reduced viscosity by light and melatonin elevates the availability of free water molecules that allow melatonin to adopt favorable conformations that enhance intrinsic features, including binding interactions with adenosine that reinforces the adenosine moiety effect of ATP responsible for preventing water removal that causes hydrophobic collapse and aggregation in phase separation. Precise recalibration of interspecies melatonin dosages that account for differences in metabolic rates and bioavailability will ensure the efficacious reinstatement of the once-powerful ancient synergy between light, water, and melatonin in a modern world.


Assuntos
Doença de Alzheimer , Melatonina , Humanos , Melatonina/metabolismo , Água , Doença de Alzheimer/metabolismo , Trifosfato de Adenosina/metabolismo , Adenosina
16.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834395

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine, MEL), its kynurenic (N1-acetyl-N2-formyl-5-methoxykynurenine, AFMK) and indolic derivatives (6-hydroxymelatonin, 6(OH)MEL and 5-methoxytryptamine, 5-MT) are endogenously produced in human epidermis. Melatonin, produced by the pineal gland, brain and peripheral organs, displays a diversity of physiological functions including anti-inflammatory, immunomodulatory, and anti-tumor capacities. Herein, we assessed their regulatory effect on melanogenesis using amelanotic (A375, Sk-Mel-28) and highly pigmented (MNT-1, melanotic) human melanoma cell lines. We discovered that subjected compounds decrease the downstream pathway of melanin synthesis by causing a significant drop of cyclic adenosine monophosphate (cAMP) level, the microphthalmia-associated transcription factor (MITF) and resultant collapse of tyrosinase (TYR) activity, and melanin content comparatively to N-phenylthiourea (PTU, a positive control). We observed a reduction in pigment in melanosomes visualized by the transmission electron microscopy. Finally, we assessed the role of G-protein-coupled seven-transmembrane-domain receptors. Obtained results revealed that nonselective MT1 and MT2 receptor antagonist (luzindole) or selective MT2 receptor antagonist (4-P-PDOT) did not affect dysregulation of the melanin pathway indicating a receptor-independent mechanism. Our findings, together with the current state of the art, provide a convenient experimental model to study the complex relationship between metabolites of melatonin and the control of pigmentation serving as a future and rationale strategy for targeted therapies of melanoma-affected patients.


Assuntos
Melanoma , Melatonina , Humanos , Melatonina/metabolismo , Melaninas , 5-Metoxitriptamina , Receptor MT2 de Melatonina , Melanoma/metabolismo , Monofenol Mono-Oxigenase
17.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895177

RESUMO

Melatonin is widely present in Nature. It has pleiotropic activities, in part mediated by interactions with high-affinity G-protein-coupled melatonin type 1 and 2 (MT1 and MT2) receptors or under extreme conditions, e.g., ischemia/reperfusion. In pharmacological concentrations, it is given to counteract the massive damage caused by MT1- and MT2-independent mechanisms. The aryl hydrocarbon receptor (AhR) is a perfect candidate for mediating the latter effects because melatonin has structural similarity to its natural ligands, including tryptophan metabolites and indolic compounds. Using a cell-based Human AhR Reporter Assay System, we demonstrated that melatonin and its indolic and kynuric metabolites act as agonists on the AhR with EC50's between 10-4 and 10-6 M. This was further validated via the stimulation of the transcriptional activation of the CYP1A1 promoter. Furthermore, melatonin and its metabolites stimulated AhR translocation from the cytoplasm to the nucleus in human keratinocytes, as demonstrated by ImageStream II cytometry and Western blot (WB) analyses of cytoplasmic and nuclear fractions of human keratinocytes. These functional analyses are supported by in silico analyses. We also investigated the peroxisome proliferator-activated receptor (PPAR)γ as a potential target for melatonin and metabolites bioregulation. The binding studies using a TR-TFRET kit to assay the interaction of the ligand with the ligand-binding domain (LBD) of the PPARγ showed agonistic activities of melatonin, 6-hydroxymelatonin and N-acetyl-N-formyl-5-methoxykynuramine with EC50's in the 10-4 M range showing significantly lower affinities that those of rosiglitazone, e.g., a 10-8 M range. These interactions were substantiated by stimulation of the luciferase activity of the construct containing PPARE by melatonin and its metabolites at 10-4 M. As confirmed by the functional assays, binding mode predictions using a homology model of the AhR and a crystal structure of the PPARγ suggest that melatonin and its metabolites, including 6-hydroxymelatonin, 5-methoxytryptamine and N-acetyl-N-formyl-5-methoxykynuramine, are excellent candidates to act on the AhR and PPARγ with docking scores comparable to their corresponding natural ligands. Melatonin and its metabolites were modeled into the same ligand-binding pockets (LBDs) as their natural ligands. Thus, functional assays supported by molecular modeling have shown that melatonin and its indolic and kynuric metabolites can act as agonists on the AhR and they can interact with the PPARγ at high concentrations. This provides a mechanistic explanation for previously reported cytoprotective actions of melatonin and its metabolites that require high local concentrations of the ligands to reduce cellular damage under elevated oxidative stress conditions. It also identifies these compounds as therapeutic agents to be used at pharmacological doses in the prevention or therapy of skin diseases.


Assuntos
Melatonina , Receptores de Hidrocarboneto Arílico , Humanos , Queratinócitos/metabolismo , Ligantes , Melatonina/metabolismo , PPAR gama/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
18.
Biochem Biophys Res Commun ; 605: 70-81, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35316766

RESUMO

The central nervous system (CNS) is endowed with a specialized cerebrospinal fluid (CSF)/lymph network which removes toxic molecules and metabolic by-products from the neural parenchyma; collectively, this has been named the glymphatic system. It allows CSF located in the subarachnoid space which surrounds the CNS to enter the depths of the brain and spinal cord by means of Virchow-Robin perivascular and perivenous spaces. CSF in the periarterial spaces is transferred across the astrocytic end feet which line these spaces aided by AQ4 channels; in the interstitium, the fluid moves via convection through the parenchyma to be eventually discharged into the perivenous spaces. As it passes through the neural tissue, the interstitial fluid flushes metabolic by-products and extracellular toxins and debris into the CSF of the perivenous spaces. The fluid then moves to the surface of the CNS where the contaminants are absorbed into true lymphatic vessels in the dura mater from where it is shunted out of the cranial vault to the cervical lymph nodes. Pineal melatonin released directly into the CSF causes the concentration of this molecule to be much higher in the CSF of the third ventricle than in the blood. After the ventricular melatonin enters the subarachnoid and Virchow-Robin spaces it is taken into the neural tissue where it functions as a potent antioxidant and anti-inflammatory agent. Experimental evidence indicates that it removes pathogenic toxins, e.g., amyloid-ß and others, from the brain to protect against neurocognitive decline. Melatonin levels drop markedly during aging, coincident with the development of several neurodegenerative diseases and the accumulation of the associated neurotoxins.


Assuntos
Melatonina , Encéfalo/fisiologia , Líquido Cefalorraquidiano/metabolismo , Melatonina/metabolismo
19.
Expert Rev Mol Med ; 24: e24, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35570582

RESUMO

There is increasing evidence that glioblastoma, a highly aggressive brain tumour, originates from a neural stem cell (NSC) located in the subventricular zone (SVZ) of the lateral cerebral ventricle. Using the most advanced in vivo imaging techniques, Gengatharan and colleagues recently identified a day/night difference in the adult SVZ-NSC division. They reported that the circadian melatonin rhythm and its receptor control the day/night difference in NSC division with high mitotic activity during the day and low activity at night. Expression of melatonin and its receptor diminishes during ageing, which eliminates the regulatory effect of melatonin on NSC mitosis. Moreover, the circadian melatonin rhythm is dampened by light-at-night with the potential of altering the circadian mitotic cycle of NSC in the SVZ. Also, men with a lower melatonin amplitude than women exhibit a 60% higher rate of glioblastoma incidence. Given that ageing contributes significantly to glioblastoma initiation and progression, we suggest that the decline in circadian melatonin synthesis and release as well as its receptors in the SVZ, which also diminish with an ageing act in concert with other factors to facilitate glioblastoma initiation and growth.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Melatonina , Células-Tronco Neurais , Adulto , Neoplasias Encefálicas/patologia , Feminino , Glioblastoma/patologia , Humanos , Ventrículos Laterais/patologia , Masculino , Células-Tronco Neurais/patologia
20.
J Exp Bot ; 73(17): 5840-5850, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35443058

RESUMO

Flowering is a critical stage in plant life history, which is coordinated by environmental signals and endogenous cues. Phytomelatonin is a widely distributed indoleamine present in all living organisms and plays pleiotropic roles in plant growth and development. Recent evidence has established that phytomelatonin could modulate flowering in many species, probably in a concentration-dependent manner. Phytomelatonin seems to associate with floral meristem identification and floral organ formation, and the fluctuation of phytomelatonin might be important for flowering. Regarding the underlying mechanisms, phytomelatonin interacts with the central components of floral gene regulatory networks directly or indirectly, including the MADS-box gene family, phytohormones, and reactive oxygen species (ROS). From an evolutionary point of view, the actions of phytomelatonin in flowering probably evolved during the period of the diversification of flowering plants and could be regarded as a functional extension of its primary activities. The presumed evolutionary history of phytomelatonin-modulated flowering is proposed, presented in the chronological order of the appearance of phytomelatonin and core flowering regulators, namely DELLA proteins, ROS, and phytohormones. Further efforts are needed to address some intriguing aspects, such as the exploration of the association between phytomelatonin and photoperiodic flowering, phytomelatonin-related floral MADS-box genes, the crosstalk between phytomelatonin and phytohormones, as well as its potential applications in agriculture.


Assuntos
Flores , Proteínas de Domínio MADS , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA