Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Microb Ecol ; 81(4): 977-989, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33404821

RESUMO

The effects of platinum (Pt) and gold (Au) and on the soil bacterial community was evaluated in four different Australian soil types (acidic Burn Grounds (BGR), organic matter-rich Fox Lane, high silt/metal Pinpinio (PPN), and alkali Minnipa (MNP) spiked with either Pt or Au at 1, 25, and 100 mg kg-1 using a next-generation sequencing approach (amplicon-based, MiSeq). Soil type and metal concentrations were observed to be key drivers of Pt and Au effects on soil microbial community structure. Different trends were therefore observed in the response of the bacterial community to Pt and Au amendments; however in each soil type, Pt and Au amendment caused a detectable shift in community structure that in most samples was positively correlated with increasing metal concentrations. New dominant groups were only observed in BGR and PPN soils at 100 mg kg-1 (Kazan-3B-28 and Verrucomicrobia groups (BGR, Pt) and Firmicutes and Caldithrix groups (PPN, Pt) and WS2 (BGR, Au). The effects of Pt on soil microbial diversity were largely adverse at 100 mg kg-1 and were pronounced in acidic, basic, and metal/silt-rich soils. However, this effect was concentration-related; Au appeared to be more toxic to soil bacterial communities than Pt at 25 mg kg-1 but Pt was more toxic at 100 mg kg-1. More bacterial groups such as those belonging to Burkholderiales/Burkholderiaceae, Alicyclobacillaceae, Rubrobacteraceae, Cytophagaceae, Oxalobacteraceae were selectively enriched by Pt compared to Au (Sphingomonadaceae and Rhodospirillaceae) amendments irrespective of soil type. The research outcomes have important implications in the management (remediation) of Pt- and Au-contaminated environments.


Assuntos
Microbiologia do Solo , Solo , Austrália , Ouro , Platina
2.
Ann Bot ; 124(6): 1007-1018, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31147694

RESUMO

BACKGROUND AND AIMS: Previous studies have described the laying down of specific B horizons in south-western Australian ecosystems. This paper presents biomolecular, morphological and physicochemical analyses elucidating the roles of specific woody plant taxa and rhizosphere bacteria in producing these phenomena. METHODS: Clayey deposits within lateral root systems of eucalypts and appropriate background soil samples were collected aseptically at multiple locations on sand dunes flanking Lake Chillinup. Bacterial communities were profiled using tagged next-generation sequencing (Miseq) of the 16S rRNA gene and assigned to operational taxonomic units. Sedimentation, selective dissolution and X-ray diffraction analyses quantitatively identified clay mineral components. Comparisons were made of pedological features between the above eucalypt systems, giant podzols under proteaceous woodland on sand dunes at the study site of Jandakot and apparently similar systems observed elsewhere in the world. KEY RESULTS: Bacterial communities in clay pods are highly diverse, resolving into 569 operational taxonomic units dominated by Actinobacteria at 38.0-87.4 % of the total reads. Multivariate statistical analyses of community fingerprints demonstrated substrate specificity. Differently coloured pods on the same host taxon carry distinctive microfloras correlated to diversities and abundances of Actinobacteria, Acidobacteria, Firmicutes and Proteobacteria. A number of these microbes are known to form biominerals, such as phyllosilicates, carbonates and Fe-oxides. A biogenic origin is suggested for the dominant identified mineral precipitates, namely illite and kaolinite. Comparisons of morphogenetic features of B horizons under eucalypts, tree banksias and other vegetation types show remarkably similar developmental trajectories involving pods of precipitation surrounding specialized fine rootlets and their orderly growth to form a continuous B horizon. CONCLUSIONS: The paper strongly supports the hypothesis that B-horizon development is mediated by highly sophisticated interactions of host plant and rhizosphere organisms in which woody plant taxa govern overall morphogenesis and supply of mineral elements for precipitation, while rhizosphere microorganisms execute biomineralization processes.


Assuntos
Argila , Rizosfera , Austrália , Raízes de Plantas , RNA Ribossômico 16S , Microbiologia do Solo
3.
Ecology ; 99(3): 583-596, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29315530

RESUMO

The ecological drivers of soil biodiversity in the Southern Hemisphere remain underexplored. Here, in a continental survey comprising 647 sites, across 58 degrees of latitude between tropical Australia and Antarctica, we evaluated the major ecological patterns in soil biodiversity and relative abundance of ecological clusters within a co-occurrence network of soil bacteria, archaea and eukaryotes. Six major ecological clusters (modules) of co-occurring soil taxa were identified. These clusters exhibited strong shifts in their relative abundances with increasing distance from the equator. Temperature was the major environmental driver of the relative abundance of ecological clusters when Australia and Antarctica are analyzed together. Temperature, aridity, soil properties and vegetation types were the major drivers of the relative abundance of different ecological clusters within Australia. Our data supports significant reductions in the diversity of bacteria, archaea and eukaryotes in Antarctica vs. Australia linked to strong reductions in temperature. However, we only detected small latitudinal variations in soil biodiversity within Australia. Different environmental drivers regulate the diversity of soil archaea (temperature and soil carbon), bacteria (aridity, vegetation attributes and pH) and eukaryotes (vegetation type and soil carbon) across Australia. Together, our findings provide new insights into the mechanisms driving soil biodiversity in the Southern Hemisphere.


Assuntos
Microbiologia do Solo , Solo/química , Regiões Antárticas , Austrália , Biodiversidade , Filogenia
4.
Appl Environ Microbiol ; 83(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939602

RESUMO

The bacterium Cupriavidus metallidurans can reduce toxic gold(I/III) complexes and biomineralize them into metallic gold (Au) nanoparticles, thereby mediating the (trans)formation of Au nuggets. In Au-rich soils, most transition metals do not interfere with the resistance of this bacterium to toxic mobile Au complexes and can be removed from the cell by plasmid-encoded metal efflux systems. Copper is a noticeable exception: the presence of Au complexes and Cu ions results in synergistic toxicity, which is accompanied by an increased cytoplasmic Cu content and formation of Au nanoparticles in the periplasm. The periplasmic Cu-oxidase CopA was not essential for formation of the periplasmic Au nanoparticles. As shown with the purified and reconstituted Cu efflux system CupA, Au complexes block Cu-dependent release of phosphate from ATP by CupA, indicating inhibition of Cu transport. Moreover, Cu resistance of Au-inhibited cells was similar to that of mutants carrying deletions in the genes for the Cu-exporting PIB1-type ATPases. Consequently, Au complexes inhibit export of cytoplasmic Cu ions, leading to an increased cellular Cu content and decreased Cu and Au resistance. Uncovering the biochemical mechanisms of synergistic Au and Cu toxicity in C. metallidurans explains the issues this bacterium has to face in auriferous environments, where it is an important contributor to the environmental Au cycle.IMPORTANCEC. metallidurans lives in metal-rich environments, including auriferous soils that contain a mixture of toxic transition metal cations. We demonstrate here that copper ions and gold complexes exert synergistic toxicity because gold ions inhibit the copper-exporting P-type ATPase CupA, which is central to copper resistance in this bacterium. Such a situation should occur in soils overlying Au deposits, in which Cu/Au ratios usually are ≫1. Appreciating how C. metallidurans solves the problem of living in environments that contain both Au and Cu is a prerequisite to understand the molecular mechanisms underlying gold cycling in the environment, and the significance and opportunities of microbiota for specific targeting to Au in mineral exploration and ore processing.


Assuntos
Cobre/toxicidade , Cupriavidus/efeitos dos fármacos , Compostos de Ouro/toxicidade , Íons/toxicidade , Nanopartículas Metálicas/toxicidade , Solo/química , Microbiologia do Solo
5.
New Phytol ; 215(3): 1186-1196, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28608615

RESUMO

The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are universal. However, empirical evidence for these relationships at the continental scale and across different soil depths is lacking. We investigate the continental-scale relationships between the diversity of microbial and invertebrate-based soil food webs, fertility and above-ground plant productivity at 289 sites and two soil depths, that is 0-10 and 20-30 cm, across Australia. Soil biodiversity, fertility and plant productivity are strongly positively related in surface soils. Conversely, in the deeper soil layer, the relationships between soil biodiversity, fertility and plant productivity weaken considerably, probably as a result of a reduction in biodiversity and fertility with depth. Further modeling suggested that strong positive associations among soil biodiversity-fertility and fertility-plant productivity are limited to the upper soil layer (0-10 cm), after accounting for key factors, such as distance from the equator, altitude, climate and physicochemical soil properties. These findings highlight the importance of surface soil biodiversity for soil fertility, and suggest that any loss of surface soil could potentially break the links between soil biodiversity-fertility and/or fertility-plant productivity, which can negatively impact nutrient cycling and food production, upon which future generations depend.


Assuntos
Biodiversidade , Desenvolvimento Vegetal , Solo , Austrália , Clima , Fertilidade , Microbiologia do Solo
6.
Appl Environ Microbiol ; 81(22): 7822-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26341204

RESUMO

This study shows that the geogenic factors landform, lithology, and underlying mineral deposits (expressed by elevated metal concentrations in overlying soils) are key drivers of microbial community diversity in naturally metal-rich Australian soils with different land uses, i.e., agriculture versus natural bushland. One hundred sixty-eight soil samples were obtained from two metal-rich provinces in Australia, i.e., the Fifield Au-Pt field (New South Wales) and the Hillside Cu-Au-U rare-earth-element (REE) deposit (South Australia). Soils were analyzed using three-domain multiplex terminal-restriction-fragment-length-polymorphism (M-TRFLP) and PhyloChip microarrays. Geogenic factors were determined using field-mapping techniques and analyses of >50 geochemical parameters. At Fifield, microbial communities differed significantly with geogenic factors and equally with land use (P < 0.05). At Hillside, communities in surface soils (0.03- to 0.2-m depth) differed significantly with landform and land use (P < 0.05). Communities in deeper soils (>0.2 m) differed significantly with lithology and mineral deposit (P < 0.05). Across both sites, elevated metal contents in soils overlying mineral deposits were selective for a range of bacterial taxa, most importantly Acidobacteria, Bacilli, Betaproteobacteria, and Epsilonproteobacteria. In conclusion, long-term geogenic factors can be just as important as land use in determining soil microbial community diversity.


Assuntos
Bactérias/genética , Metais/análise , Polimorfismo de Fragmento de Restrição , Microbiologia do Solo , Solo/química , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Análise Multivariada , New South Wales , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Austrália do Sul
7.
Electrophoresis ; 35(12-13): 1893-902, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24644151

RESUMO

Blue native PAGE (BN-PAGE) is a powerful method to separate protein complexes while preserving their native state. However, the resolution of the method is limited as complexes with similar molecular masses cannot be resolved. Here we describe native 2DE using immobilized pH-gradients in combination with BN-PAGE to resolve protein complexes by their pI and molecular mass. This method enables electrophoretic separation of proteins between pI 3 and 10 and can resolve molecular masses up to 1.2 MDa. Visualized gel spots at large molecular weight were identified using MS to confirm potential protein complexes. Several protein complexes could be identified, most prominent GroEL in complex with GroES, parts of the ribosomal machinery and membrane transport system. In summary, this method enables easy high-resolution electrophoretic separation of protein complexes.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Eletroforese em Gel de Poliacrilamida Nativa/métodos , Proteínas/isolamento & purificação , Chaperonina 60 , Peso Molecular , Proteínas/análise , Proteínas/química
8.
Environ Sci Technol ; 48(10): 5737-44, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24779406

RESUMO

Understanding the form in which gold is transported in surface- and groundwaters underpins our understanding of gold dispersion and (bio)geochemical cycling. Yet, to date, there are no direct techniques capable of identifying the oxidation state and complexation of gold in natural waters. We present a reversed phase ion-pairing HPLC-ICP-MS method for the separation and determination of aqueous gold(III)-chloro-hydroxyl, gold(III)-bromo-hydroxyl, gold(I)-thiosulfate, and gold(I)-cyanide complexes. Detection limits for the gold species range from 0.05 to 0.30 µg L(-1). The [Au(CN)2](-) gold cyanide complex was detected in five of six waters from tailings and adjacent monitoring bores of working gold mines. Contrary to thermodynamic predictions, evidence was obtained for the existence of Au(III)-complexes in circumneutral, hypersaline waters of a natural lake overlying a gold deposit in Western Australia. This first direct evidence for the existence and stability of Au(III)-complexes in natural surface waters suggests that Au(III)-complexes may be important for the transport and biogeochemical cycling of gold in surface environments. Overall, these results show that near-µg L(-1) enrichments of Au in environmental waters result from metastable ligands (e.g., CN(-)) as well as kinetically controlled redox processes leading to the stability of highly soluble Au(III)-complexes.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ouro/análise , Espectrofotometria Atômica/métodos , Água/química , Cianatos/análise , Hidrólise , Lagos/química , Ligantes , Termodinâmica , Fatores de Tempo , Austrália Ocidental
9.
J Bacteriol ; 195(10): 2298-308, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475973

RESUMO

Cupriavidus metallidurans is associated with gold grains and may be involved in their formation. Gold(III) complexes influence the transcriptome of C. metallidurans (F. Reith et al., Proc. Natl. Acad. Sci. U. S. A. 106:17757-17762, 2009), leading to the upregulation of genes involved in the detoxification of reactive oxygen species and metal ions. In a systematic study, the involvement of these systems in gold transformation was investigated. Treatment of C. metallidurans cells with Au(I) complexes, which occur in this organism's natural environment, led to the upregulation of genes similar to those observed for treatment with Au(III) complexes. The two indigenous plasmids of C. metallidurans, which harbor several transition metal resistance determinants, were not involved in resistance to Au(I/III) complexes nor in their transformation to metallic nanoparticles. Upregulation of a cupA-lacZ fusion by the MerR-type regulator CupR with increasing Au(III) concentrations indicated the presence of gold ions in the cytoplasm. A hypothesis stating that the Gig system detoxifies gold complexes by the uptake and reduction of Au(III) to Au(I) or Au(0) reminiscent to detoxification of Hg(II) was disproven. ZupT and other secondary uptake systems for transition metal cations influenced Au(III) resistance but not the upregulation of the cupA-lacZ fusion. The two copper-exporting P-type ATPases CupA and CopF were also not essential for gold resistance. The copABCD determinant on chromosome 2, which encodes periplasmic proteins involved in copper resistance, was required for full gold resistance in C. metallidurans. In conclusion, biomineralization of gold particles via the reduction of mobile Au(I/III) complexes in C. metallidurans appears to primarily occur in the periplasmic space via copper-handling systems.


Assuntos
Cobre/farmacologia , Cupriavidus/metabolismo , Ouro/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
10.
Chemosphere ; 339: 139657, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37543229

RESUMO

Specialised microbial communities colonise the surface of gold particles in soils/sediments, and catalyse gold dissolution and re-precipitation, thereby contributing to the environmental mobility and toxicity of this 'inert' precious metal. We assessed the proteomic and physiological response of Serratia proteamaculans, the first metabolically active bacterium enriched and isolated directly from natural gold particles, when exposed to toxic levels of soluble Au3+ (10 µM). The results were compared to a metal-free blank, and to cultures exposed to similarly toxic levels of soluble Cu2+ (0.1 mM); Cu was chosen for comparison because it is closely associated with Au in nature due to similar geochemical properties. A total of 273 proteins were detected from the cells that experienced the oxidative effects of soluble Au, of which 139 (51%) were upregulated with either sole expression (31%) or had synthesis levels greater than the Au-free control (20%). The majority (54%) of upregulated proteins were functionally different from up-regulated proteins in the bacteria-copper treatment. These proteins were related to broad functions involving metabolism and biogenesis, followed by cellular process and signalling, indicating significant specificity for Au. This proteomic study revealed that the bacterium upregulates the synthesis of various proteins related to oxidative stress response (e.g., Monothiol-Glutaredoxin, Thiol Peroxidase, etc.) and cellular damage repair, which leads to the formation of metallic gold nanoparticles less toxic than ionic gold. Therefore, indigenous bacteria may mediate the toxicity of Au through two different yet simultaneous processes: i) repairing cellular components by replenishing damaged proteins and ii) neutralising reactive oxygen species (ROS) by up-regulating the synthesis of antioxidants. By connecting the fields of molecular bacteriology and environmental biogeochemistry, this study is the first step towards the development of biotechnologies based on indigenous bacteria applied to gold bio-recovery and bioremediation of contaminated environments.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/toxicidade , Ouro/química , Cobre/toxicidade , Proteômica , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Bactérias
11.
Drug Test Anal ; 15(5): 551-565, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36647693

RESUMO

Recent research reported that lurasidone degrades in unpreserved ante-mortem human whole blood inoculated with microorganisms known to dominate postmortem blood specimens. In vitro degradation occurred at a similar rate to risperidone, known to degrade in authentic postmortem specimens until below analytical detection limits. To identify the lurasidone degradation products formed, an Agilent 6520 liquid chromatograph quadrupole-time-of-flight mass spectrometer (LC-QTOF-MS) operating in auto-MS/MS mode was used. Numerous degradation products not previously reported in prior in vitro or in vivo pharmacokinetic studies or forced degradation studies were detected. Accurate mass data, mass fragmentation data, acetylation experiments, and a proposed mechanism of degradation analogous to risperidone supports initial identification of the major degradation product as N-debenzisothiazole-lurasidone (calculated m/z [M + H]+ = 360.2646). A standard was unavailable to conclusively confirm this identification. Retrospective data analysis of postmortem cases involving lurasidone identified the presence of the major degradation product in four of six cases where lurasidone was also detected. This finding is significant for toxicology laboratories screening for this drug in postmortem casework. The major postmortem lurasidone degradation product has consequently been added to the LC-QTOF-MS drug screen at Forensic Science SA (FSSA) to indicate postmortem lurasidone degradation in authentic postmortem blood specimens and as a marker of lurasidone administration in the event lurasidone is degraded to concentrations below detection limits.


Assuntos
Cloridrato de Lurasidona , Espectrometria de Massas em Tandem , Humanos , Risperidona , Estudos Retrospectivos , Toxicologia Forense
12.
Drug Test Anal ; 15(2): 220-234, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36269160

RESUMO

A systematic study was performed into the degradation of ziprasidone in simulated postmortem blood. Fifteen potential degradation products not previously reported in the literature were observed. Four resulted from degradation in human blood, whereas the remaining products resulted from reaction with solvents: four from alkaline degradation, four from reaction with acetaldehyde, and three from reaction with acetone. To identify possible degradation products, a liquid chromatograph-diode array detector (LC-DAD) and liquid chromatograph quadrupole-time-of-flight mass spectrometer (LC-QTOF-MS) operating in auto-MS/MS mode were used. It was indicated from red-shifted UV-Vis spectra, accurate mass data, mass fragmentation data, and a deuteration experiment that the site of ziprasidone degradation, in the in vitro blood experiments, was the methylene carbon of the oxindole moiety. The major in vitro blood degradation products were proposed to be E/Z isomers of 3-ethylidene-ziprasidone. Further, another in vitro degradation product in microbially inoculated blood specimens was proposed to be 3-ethyl-ziprasidone. 3-Ethylidene-ziprasidone was hypothesized to form from the reaction of ziprasidone with acetaldehyde derived from the ethanol used to spike ziprasidone into the in vitro blood experiments. Data from two postmortem investigations were available for retrospective reanalysis. Attempts were made to detect degradation products of ziprasidone, but none were found.


Assuntos
Piperazinas , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Estudos Retrospectivos , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos
13.
Proc Natl Acad Sci U S A ; 106(42): 17757-62, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19815503

RESUMO

While the role of microorganisms as main drivers of metal mobility and mineral formation under Earth surface conditions is now widely accepted, the formation of secondary gold (Au) is commonly attributed to abiotic processes. Here we report that the biomineralization of Au nanoparticles in the metallophillic bacterium Cupriavidus metallidurans CH34 is the result of Au-regulated gene expression leading to the energy-dependent reductive precipitation of toxic Au(III)-complexes. C. metallidurans, which forms biofilms on Au grains, rapidly accumulates Au(III)-complexes from solution. Bulk and microbeam synchrotron X-ray analyses revealed that cellular Au accumulation is coupled to the formation of Au(I)-S complexes. This process promotes Au toxicity and C. metallidurans reacts by inducing oxidative stress and metal resistances gene clusters (including a Au-specific operon) to promote cellular defense. As a result, Au detoxification is mediated by a combination of efflux, reduction, and possibly methylation of Au-complexes, leading to the formation of Au(I)-C-compounds and nanoparticulate Au(0). Similar particles were observed in bacterial biofilms on Au grains, suggesting that bacteria actively contribute to the formation of Au grains in surface environments. The recognition of specific genetic responses to Au opens the way for the development of bioexploration and bioprocessing tools.


Assuntos
Cupriavidus/metabolismo , Ouro/farmacocinética , Nanopartículas Metálicas/química , Biofilmes/crescimento & desenvolvimento , Cupriavidus/efeitos dos fármacos , Cupriavidus/genética , Cupriavidus/ultraestrutura , Farmacorresistência Bacteriana/genética , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Genes Bacterianos , Ouro/toxicidade , Cinética , Nanopartículas Metálicas/toxicidade , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Minerais/farmacocinética , Minerais/toxicidade , Família Multigênica
14.
Drug Test Anal ; 14(7): 1200-1222, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35170234

RESUMO

In the postmortem environment, some drugs and metabolites may degrade due to microbial activity, even forming degradation products that are not produced in humans. Consequently, underestimation or overestimation of perimortem drug concentrations or even false negatives are possible when analyzing postmortem specimens. Therefore, understanding whether medications may be susceptible to microbial degradation is critical in order to ensure that reliable detection and quantitation of drugs and their degradation products is achieved in toxicology screening methods. In this study, a "simulated postmortem blood" model constructed of antemortem human whole blood inoculated with a broad population of human fecal microorganisms was used to investigate the stability of 17 antidepressant and antipsychotic drugs. Microbial communities present in the experiments were determined to be relevant to postmortem blood microorganisms by 16S rRNA sequencing analyses. After 7 days of exposure to the community at 37°C, drug stability was evaluated using liquid chromatography coupled with diode array detection (LC-DAD) and with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Most of the investigated drugs were found to be stable in inoculated samples and noninoculated controls. However, the 1,2-benzisothiazole antipsychotics, ziprasidone and lurasidone, were found to degrade at a rate comparable with the known labile control, risperidone. In longer experiments (7 to 12 months), where specimens were stored at -20°C, 4°C, and ambient temperature, N-dealkylation degradation products were detected for many of the drugs, with greater formation in specimens stored at -20°C than at 4°C.


Assuntos
Antipsicóticos , Psicotrópicos , Cromatografia Líquida , Estabilidade de Medicamentos , Toxicologia Forense/métodos , Humanos , Espectrometria de Massas , Psicotrópicos/análise , RNA Ribossômico 16S
15.
FEMS Microbiol Ecol ; 96(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32495831

RESUMO

A bacterial consortium was enriched from gold particles that 'experienced' ca. 80 years of biotransformation within waste-rock piles (Australia). This bacterial consortium was exposed to 10 µM AuCl3 to obtain Au-tolerant bacteria. From these isolates, Serratia sp. and Stenotrophomonas sp. were the most Au-tolerant and reduced soluble Au as pure gold nanoparticles, indicating that passive mineralisation is a mechanism for mediating the toxic effect of soluble Au produced during particle dissolution. Genome-wide analysis demonstrated that these isolates also possessed various genes that could provide cellular defence enabling survival under heavy-metal stressed condition by mediating the toxicity of heavy metals through active efflux/reduction. Diverse metal-resistant genes or genes clusters (cop, cus, czc, zntand ars) were detected, which could confer resistance to soluble Au. Comparative genome analysis revealed that the majority of detected heavy-metal resistant genes were similar (i.e. orthologous) to those genes of Cupriavidus metallidurans CH34. The detection of heavy-metal resistance, nutrient cycling and biofilm formation genes (pgaABCD, bsmAandhmpS) may have indirect yet important roles when dealing with soluble Au during particle dissolution. In conclusion, the physiological and genomic results suggest that bacteria living on gold particles would likely use various genes to ensure survival during Au-biogeochemical cycling.


Assuntos
Nanopartículas Metálicas , Metais Pesados , Austrália , Cupriavidus , Genômica , Ouro , Metais Pesados/toxicidade
16.
FEMS Microbiol Ecol ; 96(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31808799

RESUMO

Gold particles contain gold and other toxic, heavy metals, making them 'extreme' geochemical microenvironments. To date, the functional capabilities of bacterial biofilms to deal with these conditions have been inferred from taxonomic analyses. The aims of this study are to evaluate the functional capabilities of bacterial communities on gold particles from six key locations using GeoChip 5.0 and to link functional and taxonomic data. Biofilm communities displayed a wide range of functional capabilities, with up to 53 505 gene probes detected. The capability of bacterial communities to (re)cycle carbon, nitrogen, and sulphur were detected. The cycling of major nutrients is important for maintaining the biofilm community as well as enabling the biogeochemical cycling and mobilisation of heavy and noble metals. Additionally, a multitude of stress- and heavy metal resistance capabilities were also detected, most notably from the α/ß/γ-Proteobacteria and Actinobacteria. The multi-copper-oxidase gene copA, which is directly involved in gold resistance and biomineralisation, was the 15th most intense response and was detected in 246 genera. The Parker Road and Belle Brooke sites were consistently the most different from other sites, which may be a result of local physicochemical conditions (extreme nutrient poverty and sulphur-richness, respectively). In conclusion, biofilms on gold particles display wide-ranging metabolic and stress-related capabilities, which may enable them to survive in these niche environments and drive biotransformation of gold particles.


Assuntos
Bactérias/metabolismo , Biofilmes , Ouro/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Biomineralização , Metais Pesados/metabolismo , Microbiota , Nutrientes/metabolismo , Estresse Fisiológico
17.
Sci Total Environ ; 727: 138698, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32330727

RESUMO

In Earth's near-surface environments, gold biogeochemical cycling involves gold dissolution and precipitation processes, which are partly attributed to bacteria. These biogeochemical processes as well as abrasion (via physical transport) are known to act upon gold particles, thereby resulting in particle transformation including the development of pure secondary gold and altered morphology, respectively. While previous studies have inferred gold biogeochemical cycling from gold particles obtained from natural environments, little is known about how metal contamination in an environment could impact this cycle. Therefore, this study aims to infer how potentially toxic metal contaminants could affect the structure and chemistry of gold particles and therefore the biogeochemical cycling of gold. In doing so, river sediments and gold particles from the De Kaap Valley, South Africa, were analysed using both microanalytical and molecular techniques. Of the metal contaminants detected in the sediment, mercury can chemically interact with gold particles thereby directly altering particle morphology and "erasing" textural evidence indicative of particle transformation. Other metal contaminants (including mercury) indirectly affect gold cycling by exerting a selective pressure on bacteria living on the surface of gold particles. Particles harbouring gold-tolerant bacteria with diverse metal resistant genes, such as Arthrobacter sp. and Pseudomonas sp., contained nearly two times more secondary gold relative to particles harbouring bacteria with less gold-tolerance. In conclusion, metal contaminants can have a direct or indirect effect on gold biogeochemical cycling in natural environments impacted by anthropogenic activity.


Assuntos
Ouro , Mercúrio/análise , Bactérias , Sedimentos Geológicos , Rios , África do Sul
18.
FEMS Microbiol Ecol ; 95(7)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31132100

RESUMO

Bacteria catalyze the dissolution and re-precipitation of gold, thereby driving the biogeochemical cycle of gold. Dissolution of gold/silver and re-precipitation of gold transforms gold particles by increasing gold purity. While soluble gold complexes are highly cytotoxic, little is known about how gold cycling affects bacterial communities residing on gold particles. Micro-analysis of gold particles obtained from Western Australia revealed porous textures and aggregates of pure gold nanoparticles, attributable to gold dissolution and re-precipitation, respectively. By interpreting structure and chemistry of particles, the kinetics of gold biogeochemical cycling at the site was estimated to be 1.60 × 10-9 M year-1. Bacterial communities residing on particles were composed of Proteobacteria (42.5%), Bacteroidetes (20.1%), Acidobacteria (19.1%), Firmicutes (8.2%), Actinobacteria (3.7%) and Verrucomicrobia (3.6%). A bacterial enrichment culture obtained from particles contained a similar composition. Exposure of enrichments to increasing concentrations of soluble gold decreased community diversity and selected for metal-resistant bacteria. Lower gold concentrations, which corresponded well with the concentration from the kinetic rate, provided a selective pressure for the selection of metal-resistant organisms while retaining the overall diversity. In conclusion, biogeochemical gold cycling directly influences bacterial communities on gold particles, thereby contributing to a continuum of particle transformation.


Assuntos
Bactérias/metabolismo , Ouro/metabolismo , Nanopartículas Metálicas/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biomineralização , Ouro/química , Cinética , Nanopartículas Metálicas/química , Metais/metabolismo , Microbiota , RNA Ribossômico 16S/genética , Prata/metabolismo
19.
FEMS Microbiol Ecol ; 94(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29733348

RESUMO

Biofilms on placer gold (Au)-particle surfaces drive Au solubilization and re-concentration thereby progressively transforming the particles. Gold solubilization induces Au-toxicity; however, Au-detoxifying community members ameliorates Au-toxicity by precipitating soluble Au to metallic Au. We hypothesize that Au-dissolution and re-concentration (precipitation) place selective pressures on associated microbial communities, leading to compositional changes and subsequent Au-particle transformation. We analyzed Au-particles from eight United Kingdom sites using next generation sequencing, electron microscopy and micro-analyses. Gold particles contained biofilms composed of prokaryotic cells and extracellular polymeric substances intermixed with (bio)minerals. Across all sites communities were dominated by Proteobacteria (689, 97% Operational Taxonomic Units, 59.3% of total reads), with ß-Proteobacteria being the most abundant. A wide range of Au-morphotypes including nanoparticles, micro-crystals, sheet-like Au and secondary rims, indicated that dissolution and re-precipitation occurred, and from this transformation indices were calculated. Multivariate statistical analyses showed a significant relationship between the extent of Au-particle transformation and biofilm community composition, with putative metal-resistant Au-cycling taxa linked to progressive Au transformation. These included the genera Pseudomonas, Leptothrix and Acinetobacter. Additionally, putative exoelectrogenic genera Rhodoferax and Geobacter were highly abundant. In conclusion, biogeochemical Au-cycling and Au-particle transformation occurred at all sites and exerted a strong influence on biofilm community composition.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Ouro/metabolismo , Microbiota/efeitos dos fármacos , Bactérias/genética , Biofilmes/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética , Reino Unido
20.
FEMS Microbiol Ecol ; 92(6): fiw082, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27098381

RESUMO

The biogeochemical cycling of gold (Au), i.e. its solubilization, transport and re-precipitation, leading to the (trans)formation of Au grains and nuggets has been demonstrated under a range of environmental conditions. Biogenic (trans)formations of Au grains are driven by (geo)biochemical processes mediated by distinct biofilm consortia living on these grains. This review summarizes the current knowledge concerning the composition and functional capabilities of Au-grain communities, and identifies contributions of key-species involved in Au-cycling. To date, community data are available from grains collected at 10 sites in Australia, New Zealand and South America. The majority of detected operational taxonomic units detected belong to the α-, ß- and γ-Proteobacteria and the Actinobacteria. A range of organisms appears to contribute predominantly to biofilm establishment and nutrient cycling, some affect the mobilization of Au via excretion of Au-complexing ligands, e.g. organic acids, thiosulfate and cyanide, while a range of resident Proteobacteria, especially Cupriavidus metallidurans and Delftia acidovorans, have developed Au-specific biochemical responses to deal with Au-toxicity and reductively precipitate mobile Au-complexes. This leads to the biomineralization of secondary Au and drives the environmental cycle of Au.


Assuntos
Actinobacteria/metabolismo , Alphaproteobacteria/metabolismo , Biofilmes/crescimento & desenvolvimento , Cupriavidus/metabolismo , Delftia/metabolismo , Gammaproteobacteria/metabolismo , Ouro/metabolismo , Actinobacteria/crescimento & desenvolvimento , Alphaproteobacteria/crescimento & desenvolvimento , Austrália , Cupriavidus/crescimento & desenvolvimento , Delftia/crescimento & desenvolvimento , Gammaproteobacteria/crescimento & desenvolvimento , Nova Zelândia , América do Sul , Tiossulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA