Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250350

RESUMO

Dorsal neural tube-derived retinoic acid promotes the end of neural crest production and transition into a definitive roof plate. Here we analyze how this impacts the segregation of central and peripheral lineages, a process essential for tissue patterning and function. Localized in-ovo inhibition in quail embryos of retinoic acid activity followed by single cell transcriptomics unraveled a comprehensive list of differentially expressed genes relevant to these processes. Importantly, progenitors co-expressed neural crest, roof plate and dI1 interneuron markers indicating a failure in proper lineage segregation. Furthermore, separation between roof plate and dI1 interneurons is mediated by Notch activity downstream of retinoic acid, highlighting their critical role in establishing the roof plate-dI1 boundary. Within the peripheral branch, where absence of retinoic acid resulted in neural crest production and emigration extending into the roof plate stage, sensory progenitors failed to separate from melanocytes leading to formation of a common glia-melanocyte cell with aberrant migratory patterns. Together, the implementation of scRNA sequencing facilitated the discovery and characterization of a molecular mechanism responsible for the segregation of dorsal neural fates during development.

2.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920095

RESUMO

Research on the development of the dorsal neural tube is particularly challenging. In this highly dynamic domain, a temporal transition occurs between early neural crest progenitors that undergo an epithelial-to-mesenchymal transition and exit the neural primordium, and the subsequent roof plate, a resident epithelial group of cells that constitutes the dorsal midline of the central nervous system. Among other functions, the roof plate behaves as an organizing center for the generation of dorsal interneurons. Despite extensive knowledge of the formation, emigration and migration of neural crest progenitors, little is known about the mechanisms leading to the end of neural crest production and the transition into a roof plate stage. Are these two mutually dependent or autonomously regulated processes? Is the generation of roof plate and dorsal interneurons induced by neural tube-derived factors throughout both crest and roof plate stages, respectively, or are there differences in signaling properties and responsiveness as a function of time? In this review, we discuss distinctive characteristics of each population and possible mechanisms leading to the shift between the above cell types.


Assuntos
Diferenciação Celular/genética , Sistema Nervoso Central/crescimento & desenvolvimento , Crista Neural/crescimento & desenvolvimento , Tubo Neural/crescimento & desenvolvimento , Animais , Proteínas Morfogenéticas Ósseas/genética , Sistema Nervoso Central/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Interneurônios/metabolismo , Transdução de Sinais/genética , Proteínas Wnt/genética
3.
Elife ; 112022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394423

RESUMO

Production and emigration of neural crest cells is a transient process followed by the emergence of the definitive roof plate. The mechanisms regulating the end of neural crest ontogeny are poorly understood. Whereas early crest development is stimulated by mesoderm-derived retinoic acid, we report that the end of the neural crest period is regulated by retinoic acid synthesized in the dorsal neural tube. Inhibition of retinoic acid signaling in the neural tube prevents the normal upregulation of BMP inhibitors in the nascent roof plate and prolongs the period of BMP responsiveness which otherwise ceases close to roof plate establishment. Consequently, neural crest production and emigration are extended well into the roof plate stage. In turn, extending the activity of neural crest-specific genes inhibits the onset of retinoic acid synthesis in roof plate suggesting a mutual repressive interaction between neural crest and roof plate traits. Although several roof plate-specific genes are normally expressed in the absence of retinoic acid signaling, roof plate and crest markers are co-expressed in single cells and this domain also contains dorsal interneurons. Hence, the cellular and molecular architecture of the roof plate is compromised. Collectively, our results demonstrate that neural tube-derived retinoic acid, via inhibition of BMP signaling, is an essential factor responsible for the end of neural crest generation and the proper segregation of dorsal neural lineages.


The division between the central nervous system ­ formed by the brain and spinal cord ­ and the peripheral nervous system ­ which consists of the neurons that sense and relay information to and from the body ­ takes place early during embryonic development. Initially, the nervous system consists of a tube of cells called the neural tube. From the top region of this tube, some cells change their shape, exit the tube and migrate to different places in the developing body. These cells are called the 'neural crest', and they form many different structures, including the peripheral nervous system. Neural crest cells keep leaving the neural tube for a period of time, but after that, the neural tube stops producing them. At this point, the region of the neural tube that had been producing neural crest cells becomes the 'roof plate' of the central nervous system, a structure that is essential for the development of specific groups of neurons in the brain and spinal cord. In bird embryos, a protein called bone morphogenetic protein (BMP) is essential for neural crest production because it triggers the migration of these cells away from the neural tube. Before the roof plate is formed, the activity of BMP is blocked by proteins known as BMP inhibitors, which stop more cells from leaving the neural tube. Around the time when neural crest formation stops, another molecule called retinoic acid begins to be synthesized in the top region of the neural tube. Rekler and Kalcheim asked whether retinoic acid is involved in the transition from neural crest to roof plate. To test this hypothesis, Rekler and Kalcheim blocked the activity of retinoic acid in the neural tube of quail embryos at the time when they should stop producing neural crest cells. This resulted in embryos in which the neural tube keeps producing neural crest cells after the roof plate has formed. In these embryos, individual cells in the resulting 'roof plate' produced both proteins that are normally only found in neural crest cells, and proteins typically exclusive to the roof plate. This suggests that, in the absence of retinoic acid activity, the segregation of neural crest identity from roof plate identity is compromised. Rekler and Kalcheim also found that, in the embryos where retinoic acid activity had been blocked, the cells in the area where the roof plate should be produced virtually no BMP inhibitors, and exhibited extended BMP activity. This allowed neural crest cells to continue forming and migrating away from the neural tube well after the period when they would stop in a normal embryo. These results indicate that retinoic acid stops the production of neural crest cells by repressing BMP activity in the roof plate of the neural tube. Rekler and Kalcheim's experiments shed light on the mechanisms that allow the central and peripheral nervous systems to become segregated. This could increase our understanding of the origin of several neurodevelopmental disorders, potentially providing insights into their treatment or prevention. Additionally, the process of neural crest production and exit from the neural tube is highly similar to the process of metastasis in many invasive cancers. Thus, by understanding how the production of neural crest cells is terminated, it may be possible to learn how to prevent malignant cancer cells from spreading through the body.


Assuntos
Crista Neural , Tretinoína , Proteínas Morfogenéticas Ósseas/metabolismo , Emigração e Imigração , Regulação da Expressão Gênica no Desenvolvimento , Tretinoína/farmacologia
4.
Fac Rev ; 11: 27, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225209

RESUMO

The vertebrate neural tube is a representative example of a morphogen-patterned tissue that generates different cell types with spatial and temporal precision. More specifically, the development of the dorsal region of the neural tube is of particular interest because of its highly dynamic behavior. First, early premigratory neural crest progenitors undergo an epithelial-to-mesenchymal transition, exit the neural primordium, and generate, among many derivatives, most of the peripheral nervous system. Subsequently, the dorsal neural tube becomes populated by definitive roof plate cells that constitute an organizing center for dorsal interneurons and guide axonal patterning. In turn, roof plate cells transform into dorsal radial glia that contributes to and shapes the formation of the dorsal ependyma of the central nervous system. To form a normal functional spinal cord, these extraordinary transitions should be tightly regulated in time and space. Thus far, the underlying cellular changes and molecular mechanisms are only beginning to be uncovered. In this review, we discuss recent results that shed light on the end of neural crest production and delamination, the early formation of the definitive roof plate, and its further maturation into radial glia. The last of these processes culminate in the formation of the dorsal ependyma, a component of the stem cell niche of the central nervous system. We highlight how similar mechanisms operate throughout these transitions, which may serve to reveal common design principles applicable to the ontogeny of epithelial tissues.

5.
Elife ; 112022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35311642

RESUMO

We recently identified a missense mutation in Nucleoporin107 (Nup107; D447N) underlying XX-ovarian-dysgenesis, a rare disorder characterized by underdeveloped and dysfunctional ovaries. Modeling of the human mutation in Drosophila or specific knockdown of Nup107 in the gonadal soma resulted in ovarian-dysgenesis-like phenotypes. Transcriptomic analysis identified the somatic sex-determination gene doublesex (dsx) as a target of Nup107. Establishing Dsx as a primary relevant target of Nup107, either loss or gain of Dsx in the gonadal soma is sufficient to mimic or rescue the phenotypes induced by Nup107 loss. Importantly, the aberrant phenotypes induced by compromising either Nup107 or dsx are reminiscent of bone morphogenetic protein (BMP signaling hyperactivation). Remarkably, in this context, the metalloprotease AdamTS-A, a transcriptional target of both Dsx and Nup107, is necessary for the calibration of BMP signaling. As modulation of BMP signaling is a conserved critical determinant of soma-germline interaction, the sex- and tissue-specific deployment of Dsx-F by Nup107 seems crucial for the maintenance of the homeostatic balance between the germ cells and somatic gonadal cells.


Assuntos
Aquaporinas , Proteínas de Drosophila , Animais , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Diferenciação Sexual/genética
6.
J Clin Invest ; 125(11): 4295-304, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26485283

RESUMO

Ovarian development and maintenance are poorly understood; however, diseases that affect these processes can offer insights into the underlying mechanisms. XX female gonadal dysgenesis (XX-GD) is a rare, genetically heterogeneous disorder that is characterized by underdeveloped, dysfunctional ovaries, with subsequent lack of spontaneous pubertal development, primary amenorrhea, uterine hypoplasia, and hypergonadotropic hypogonadism. Here, we report an extended consanguineous family of Palestinian origin, in which 4 females exhibited XX-GD. Using homozygosity mapping and whole-exome sequencing, we identified a recessive missense mutation in nucleoporin-107 (NUP107, c.1339G>A, p.D447N). This mutation segregated with the XX-GD phenotype and was not present in available databases or in 150 healthy ethnically matched controls. NUP107 is a component of the nuclear pore complex, and the NUP107-associated protein SEH1 is required for oogenesis in Drosophila. In Drosophila, Nup107 knockdown in somatic gonadal cells resulted in female sterility, whereas males were fully fertile. Transgenic rescue of Drosophila females bearing the Nup107D364N mutation, which corresponds to the human NUP107 (p.D447N), resulted in almost complete sterility, with a marked reduction in progeny, morphologically aberrant eggshells, and disintegrating egg chambers, indicating defective oogenesis. These results indicate a pivotal role for NUP107 in ovarian development and suggest that nucleoporin defects may play a role in milder and more common conditions such as premature ovarian failure.


Assuntos
Aquaporinas/fisiologia , Proteínas de Drosophila/fisiologia , Disgenesia Gonadal 46 XX/genética , Mutação de Sentido Incorreto , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Ovário/patologia , Adolescente , Adulto , Animais , Animais Geneticamente Modificados , Aquaporinas/deficiência , Aquaporinas/genética , Consanguinidade , Modelos Animais de Doenças , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Humanos , Infertilidade Feminina/genética , Masculino , Camundongos , Modelos Moleculares , Morfogênese , Complexos Multiproteicos , Complexo de Proteínas Formadoras de Poros Nucleares/deficiência , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Oogênese/genética , Óvulo/patologia , Linhagem , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA