Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
3.
mSystems ; 9(6): e0133923, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38752784

RESUMO

The vaginal microbiome has been linked to negative health outcomes including preterm birth. Specific taxa, including Gardnerella spp., have been identified as risk factors for these conditions. Historically, microbiome analysis methods have treated all Gardnerella spp. as one species, but the broad diversity of Gardnerella has become more apparent. We explore the diversity of Gardnerella clades and genomic species in the vaginal microbiome of pregnant women and their associations with microbiome composition and preterm birth. Relative abundance of Gardnerella clades and genomic species and other taxa was quantified in shotgun metagenomic sequencing data from three distinct cohorts of pregnant women. We also assessed the diversity and abundance of Gardnerella variants in 16S rRNA gene amplicon sequencing data from seven previously conducted studies in differing populations. Individual microbiomes often contained multiple Gardnerella variants, and the number of clades was associated with increased microbial load, or the ratio of non-human reads to human reads. Taxon co-occurrence patterns were largely consistent across Gardnerella clades and among cohorts. Some variants previously described as rare were prevalent in other cohorts, highlighting the importance of surveying a diverse set of populations to fully capture the diversity of Gardnerella. The diversity of Gardnerella both across populations and within individual vaginal microbiomes has long been unappreciated, as has been the intra-species diversity of many other members of the vaginal microbiome. The broad genomic diversity of Gardnerella has led to its reclassification as multiple species; here we demonstrate the diversity of Gardnerella found within and between vaginal microbiomes.IMPORTANCEThe present study shows that single microbiomes can contain all currently known species of Gardnerella and that multiple similar species can exist within the same environment. Furthermore, surveys of demographically distinct populations suggest that some species appear more commonly in certain populations. Further studies in broad and diverse populations will be necessary to fully understand the ecological roles of each Gardnerella sp., how they can co-exist, and their distinct impacts on microbial communities, preterm birth, and other health outcomes.


Assuntos
Gardnerella , Microbiota , Nascimento Prematuro , RNA Ribossômico 16S , Vagina , Humanos , Feminino , Gravidez , Nascimento Prematuro/microbiologia , Vagina/microbiologia , Microbiota/genética , Gardnerella/genética , Gardnerella/isolamento & purificação , RNA Ribossômico 16S/genética , Adulto , Variação Genética
4.
bioRxiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39005279

RESUMO

Background: Lifestyle plays an important role in shaping the gut microbiome. However, its contributions to the oral microbiome remains less clear, due to the confounding effects of geography and methodology in investigations of populations studied to date. Furthermore, while the oral microbiome seems to differ between foraging and industrialized populations, we lack insight into whether transitions to and away from agrarian lifestyles shape the oral microbiota. Given the growing interest in so-called 'vanishing microbiomes' potentially being a risk factor for increased disease prevalence in industrialized populations, it is important that we distinguish lifestyle from geography in the study of microbiomes across populations. Results: Here, we investigate salivary microbiomes of 63 Nepali individuals representing a spectrum of lifestyles: foraging, subsistence farming (individuals that transitioned from foraging to farming within the last 50 years), agriculturalists (individuals that have transitioned to farming for at least 300 years), and industrialists (expatriates that immigrated to the United States within the last 20 years). We characterize the role of lifestyle in microbial diversity, identify microbes that differ between lifestyles, and pinpoint specific lifestyle factors that may be contributing to differences in the microbiomes across populations. Contrary to prevailing views, when geography is controlled for, oral microbiome alpha diversity does not differ significantly across lifestyles. Microbiome composition, however, follows the gradient of lifestyles from foraging through agrarianism to industrialism, supporting the notion that lifestyle indeed plays a role in the oral microbiome. Relative abundances of several individual taxa, including Streptobacillus and an unclassified Porphyromonadaceae genus, also mirror lifestyle. Finally, we identify specific lifestyle factors associated with microbiome composition across the gradient of lifestyles, including smoking and grain source. Conclusion: Our findings demonstrate that by controlling for geography, we can isolate an important role for lifestyle in determining oral microbiome composition. In doing so, we highlight the potential contributions of several lifestyle factors, underlining the importance of carefully examining the oral microbiome across lifestyles to improve our understanding of global microbiomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA