Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Chem Rev ; 123(10): 6413-6544, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37186959

RESUMO

Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.

2.
J Chem Phys ; 160(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38189604

RESUMO

Organic molecular solids can exhibit rich phase diagrams. In addition to structurally unique phases, translational and rotational degrees of freedom can melt at different state points, giving rise to partially disordered solid phases. The structural and dynamic disorder in these materials can have a significant impact on the physical properties of the organic solid, necessitating a thorough understanding of disorder at the atomic scale. When these disordered phases form at low temperatures, especially in crystals with light nuclei, the prediction of material properties can be complicated by the importance of nuclear quantum effects. As an example, we investigate nuclear quantum effects on the structure and dynamics of the orientationally disordered, translationally ordered plastic phase of the acetylene:ammonia (1:1) co-crystal that is expected to exist on the surface of Saturn's moon Titan. Titan's low surface temperature (∼90 K) suggests that the quantum mechanical behavior of nuclei may be important in this and other molecular solids in these environments. By using neural network potentials combined with ring polymer molecular dynamics simulations, we show that nuclear quantum effects increase orientational disorder and rotational dynamics within the acetylene:ammonia (1:1) co-crystal by weakening hydrogen bonds. Our results suggest that nuclear quantum effects are important to accurately model molecular solids and their physical properties in low-temperature environments.

3.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34172582

RESUMO

The phyllosilicate mineral muscovite mica is widely used as a surface template for the patterning of macromolecules, yet a molecular understanding of its surface chemistry under varying solution conditions, required to predict and control the self-assembly of adsorbed species, is lacking. We utilize all-atom molecular dynamics simulations in conjunction with an electrostatic analysis based in local molecular field theory that affords a clean separation of long-range and short-range electrostatics. Using water polarization response as a measure of the electric fields that arise from patterned, surface-bound ions that direct the adsorption of charged macromolecules, we apply a Landau theory of forces induced by asymmetrically polarized surfaces to compute protein-surface interactions for two muscovite-binding proteins (DHR10-mica6 and C98RhuA). Comparison of the pressure between surface and protein in high-concentration KCl and NaCl aqueous solutions reveals ion-specific differences in far-field protein-surface interactions, neatly capturing the ability of ions to modulate the surface charge of muscovite that in turn selectively attracts one binding face of each protein over all others.


Assuntos
Proteínas/química , Solventes/química , Silicatos de Alumínio/química , Íons , Microscopia de Força Atômica , Probabilidade , Propriedades de Superfície , Água/química
4.
J Chem Phys ; 159(23)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38099542

RESUMO

Nuclear quantum effects play critical roles in a variety of molecular processes, especially in systems that contain hydrogen and other light nuclei, such as water. For water under ambient conditions, nuclear quantum effects are often interpreted as local effects resulting from a smearing of the hydrogen atom distribution. However, the orientational structure of water at interfaces determines long-range effects, such as electrostatics, through the O-H bond ordering that is impacted by nuclear quantum effects. In this work, I examine nuclear quantum effects on long-range electrostatics of water confined between hydrophobic walls using path integral simulations. To do so, I combine concepts from local molecular field theory with path integral methods at varying levels of approximation to develop efficient and physically intuitive approaches for describing long-range electrostatics in nonuniform quantum systems. Using these approaches, I show that quantum water requires larger electrostatic forces to achieve interfacial screening than the corresponding classical system. This work highlights the subtleties of electrostatics in nonuniform classical and quantum molecular systems, and the methods presented here are expected to be of use to efficiently model nuclear quantum effects in large systems.

5.
Proc Natl Acad Sci U S A ; 117(3): 1293-1302, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31911472

RESUMO

Coulomb interactions play a major role in determining the thermodynamics, structure, and dynamics of condensed-phase systems, but often present significant challenges. Computer simulations usually use periodic boundary conditions to minimize corrections from finite cell boundaries but the long range of the Coulomb interactions generates significant contributions from distant periodic images of the simulation cell, usually calculated by Ewald sum techniques. This can add significant overhead to computer simulations and hampers the development of intuitive local pictures and simple analytic theory. In this paper, we present a general framework based on local molecular field theory to accurately determine the contributions from long-ranged Coulomb interactions to the potential of mean force between ionic or apolar hydrophobic solutes in dilute aqueous solutions described by standard classical point charge water models. The simplest approximation leads to a short solvent (SS) model, with truncated solvent-solvent and solute-solvent Coulomb interactions and long-ranged but screened Coulomb interactions only between charged solutes. The SS model accurately describes the interplay between strong short-ranged solute core interactions, local hydrogen-bond configurations, and long-ranged dielectric screening of distant charges, competing effects that are difficult to capture in standard implicit solvent models.

6.
J Am Chem Soc ; 143(41): 16993-17003, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34596386

RESUMO

The host-guest chemistry of metal-organic nanocages is typically driven by thermodynamically favorable interactions with their guests such that uptake and release of guests can be controlled by switching this affinity on or off. Herein, we achieve this effect by reducing porphyrin-walled cationic nanoprisms 1a12+ and 1b12+ to zwitterionic states that rapidly uptake organometallic cations Cp*2Co+ and Cp2Co+, respectively. Cp*2Co+ binds strongly (Ka = 1.3 × 103 M-1) in the neutral state 1a0 of host 1a12+, which has its three porphyrin walls doubly reduced and its six (bipy)Pt2+ linkers singly reduced (bipy = 2,2'-bipyridine). The less-reduced states of the host 1a3+ and 1a9+ also bind Cp*2Co+, though with lower affinities. The smaller Cp2Co+ cation binds strongly (Ka = 1.7 × 103 M-1) in the 3e- reduced state 1b9+ of the (tmeda)Pt2+-linked host 1b12+ (tmeda = N,N,N',N'-tetramethylethylenediamine). Upon reoxidation of the hosts with Ag+, the guests become trapped to provide unprecedented metastable cation-in-cation complexes Cp*2Co+@1a12+ and Cp2Co+@1b12+ that persist for >1 month. Thus, dramatic kinetic effects reveal a way to confine the guests in thermodynamically unfavorable environments. Experimental and DFT studies indicate that PF6- anions kinetically stabilize Cp*2Co+@1a12+ through electrostatic interactions and by influencing conformational changes of the host that open and close its apertures. However, when Cp*2Co+@1a12+ was prepared using ferrocenium (Fc+) instead of Ag+ to reoxidize the host, dissociation was accelerated >200× even though neither Fc+ nor Fc have any observable affinity for 1a12+. This finding shows that metastable host-guest complexes can respond to subtler stimuli than those required to induce guest release from thermodynamically favorable complexes.

7.
Proc Natl Acad Sci U S A ; 115(15): 3776-3781, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581284

RESUMO

We report the observation of a sizable photostrictive effect of 5.7% with fast, submillisecond response times, arising from a light-induced lattice dilation of a molecular nanosheet, composed of the molecular charge-transfer compound dibenzotetrathiafulvalene (DBTTF) and C60 An interfacial self-assembly approach is introduced for the thickness-controlled growth of the thin films. From photoabsorption measurements, molecular simulations, and electronic structure calculations, we suggest that photostriction within these films arises from a transformation in the molecular structure of constituent molecules upon photoinduced charge transfer, as well as the accommodation of free charge carriers within the material. Additionally, we find that the photostrictive properties of the nanosheets are thickness-dependent, a phenomenon that we suggest arises from surface-induced conformational disorder in the molecular components of the film. Moreover, because of the molecular structure in the films, which results largely from interactions between the constituent π-systems and the sulfur atoms of DBTTF, the optoelectronic properties are found to be anisotropic. This work enables the fabrication of 2D molecular charge-transfer nanosheets with tunable thicknesses and properties, suitable for a wide range of applications in flexible electronic technologies.

8.
Phys Rev Lett ; 124(6): 066001, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109086

RESUMO

Traditional classifications of crystalline phases focus on nuclear degrees of freedom. Through the examination of both electronic and nuclear structure, we introduce the concept of an electronic plastic crystal. Such a material is classified by crystalline nuclear structure, while localized electronic degrees of freedom-here lone pairs-exhibit orientational motion at finite temperatures. This orientational motion is an emergent phenomenon arising from the coupling between electronic structure and polarization fluctuations generated by collective motions, such as phonons. Using ab initio molecular dynamics simulations, we predict the existence of electronic plastic crystal motion in halogen crystals and halide perovskites, and suggest that such motion may be found in a broad range of solids with lone pair electrons. Such fluctuations in the charge density should be observable, in principle, via synchrotron scattering.

9.
Phys Rev Lett ; 125(7): 075702, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857559

RESUMO

We use computationally simple neutral pseudoatom ("average atom") density functional theory (DFT) and standard DFT to elucidate liquid-liquid phase transitions (LPTs) in liquid silicon. An ionization-driven transition and three LPTs including the known LPT near 2.5 g/cm^{3} are found. They are robust even to 1 eV. The pair distributions functions, pair potentials, electrical conductivities, and compressibilites are reported. The LPTs are elucidated within a Fermi liquid picture of electron scattering at the Fermi energy that complements the transient covalent bonding picture.

10.
J Chem Phys ; 153(12): 121104, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33003737

RESUMO

The quantum many-body problem in condensed phases is often simplified using a quasiparticle description, such as effective mass theory for electron motion in a periodic solid. These approaches are often the basis for understanding many fundamental condensed phase processes, including the molecular mechanisms underlying solar energy harvesting and photocatalysis. Despite the importance of these effective particles, there is still a need for computational methods that can explore their behavior on chemically relevant length and time scales. This is especially true when the interactions between the particles and their environment are important. We introduce an approach for studying quasiparticles in condensed phases by combining effective mass theory with the path integral treatment of quantum particles. This framework incorporates the generally anisotropic electronic band structure of materials into path integral simulation schemes to enable modeling of quasiparticles in quantum confinement, for example. We demonstrate the utility of effective mass path integral simulations by modeling an exciton in solid potassium chloride and electron trapping by a sulfur vacancy in monolayer molybdenum disulfide.

11.
Proc Natl Acad Sci U S A ; 114(41): 10846-10851, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973868

RESUMO

Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice Ih at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner.

12.
J Phys Chem A ; 123(5): 1077-1084, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30609371

RESUMO

Water exchange reactions around ionic solutes are ubiquitous in aqueous solution-phase chemistry. However, the extreme sensitivity of exchange rates to perturbations in the chemistry of an ionic solute is not well understood. We examine water exchange around model ions within the language of dynamic facilitation theory, typically used to describe glassy and other systems with collective, facilitated dynamics. Through the development of a coarse-grained, kinetically constrained lattice model of water exchange, we show that the time scale for water exchange scales exponentially with the strength of the solute-solvent interactions.

13.
Proc Natl Acad Sci U S A ; 113(11): 2819-26, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929375

RESUMO

Long-standing problems associated with long-ranged electrostatic interactions have plagued theory and simulation alike. Traditional lattice sum (Ewald-like) treatments of Coulomb interactions add significant overhead to computer simulations and can produce artifacts from spurious interactions between simulation cell images. These subtle issues become particularly apparent when estimating thermodynamic quantities, such as free energies of solvation in charged and polar systems, to which long-ranged Coulomb interactions typically make a large contribution. In this paper, we develop a framework for determining very accurate solvation free energies of systems with long-ranged interactions from models that interact with purely short-ranged potentials. Our approach is generally applicable and can be combined with existing computational and theoretical techniques for estimating solvation thermodynamics. We demonstrate the utility of our approach by examining the hydration thermodynamics of hydrophobic and ionic solutes and the solvation of a large, highly charged colloid that exhibits overcharging, a complex nonlinear electrostatic phenomenon whereby counterions from the solvent effectively overscreen and locally invert the integrated charge of the solvated object.

14.
J Chem Phys ; 148(19): 193810, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307173

RESUMO

Solvent density fluctuations play a crucial role in liquid-vapor transitions in solvophobic confinement and can also be important for understanding solvation of polar and apolar solutes. In the case of ionic liquids (ILs), density fluctuations can be used to understand important processes in the context of nanoscale aggregation and colloidal self-assemblies. In this article, we explore the nature of density fluctuations associated with capillary evaporation of the IL 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) in the confined region of model solvophobic nanoscale sheets by using molecular dynamics simulations combined with non-Boltzmann sampling techniques. We demonstrate that density fluctuations of the confined IL play an important role in capillary evaporation, suggesting analogies to dewetting transitions involving water. Significant changes in the interfacial structure of the IL are also detailed and suggested to underlie a non-classical (non-parabolic) dependence of the free energy barrier to evaporation on the degree of confinement.

15.
Proc Natl Acad Sci U S A ; 112(27): 8181-6, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100866

RESUMO

Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces--tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces--namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics--facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie-Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly.

16.
J Am Chem Soc ; 139(5): 1863-1870, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28085268

RESUMO

We investigated the dependence of the electrocatalytic activity for the oxygen evolution reaction (OER) on the interlayer distance of five compositionally distinct layered manganese oxide nanostructures. Each individual electrocatalyst was assembled with a different alkali metal intercalated between two nanosheets (NS) of manganese oxide to form a bilayer structure. Manganese oxide NS were synthesized via the exfoliation of a layered material, birnessite. Atomic force microscopy was used to determine the heights of the bilayer catalysts. The interlayer spacing of the supported bilayers positively correlates with the size of the alkali cation: NS/Cs+/NS > NS/Rb+/NS > NS/K+/NS > NS/Na+/NS > NS/Li+/NS. The thermodynamic origins of these bilayer heights were investigated using molecular dynamics simulations. The overpotential (η) for the OER correlates with the interlayer spacing; NS/Cs+/NS has the lowest η (0.45 V), while NS/Li+/NS exhibits the highest η (0.68 V) for OER at a current density of 1 mA/cm2. Kinetic parameters (η and Tafel slope) associated with NS/Cs+/NS for the OER were superior to that of the bulk birnessite phase, highlighting the structural uniqueness of these nanoscale assemblies.

17.
Proc Natl Acad Sci U S A ; 116(48): 23874-23876, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31659047
18.
Phys Chem Chem Phys ; 19(1): 258-266, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27901138

RESUMO

Amino ester-based benzene-1,3,5-tricarboxamides (BTAs) are widely studied experimentally for their facile self-assembly, which leads to strong three-fold hydrogen bonded supramolecular polymers. Understanding the supramolecular assembly of these BTAs is complicated by the presence of two types of dimers, based on the nature of the intermolecular hydrogen bonding pattern: amide-amide (AA) and amide-carboxylate (AC). AA dimers form three hydrogen bonds between the two molecules, are typical of BTA stacks, and act as a basic building block of assembly. In contrast, AC hydrogen bonding results in six hydrogen bonds between two molecules, and this face-to-face orientation results in a dimer that is more stable than the AA one, however, unfavorable for further assembly. We perform atomistic molecular dynamics (MD) simulations of three derivatives of BTA in order to rationalize the large body of experimental data for these systems, specifically the relative stabilities of AA and AC dimers and oligomers. We find that at zero Kelvin, the AC dimer is more stable than the AA dimer by roughly 20 kcal mol-1. MD simulations of three BTA derivatives (BTA-Met, BTA-Nle, and BTA-Phe) under realistic conditions show that BTA-Met and BTA-Phe can aggregate to form longer assemblies via additional stabilization offered by weak CHS and CHπ hydrogen bonds, respectively. However, the aggregation of BTA-Nle, which is devoid of such functionalities, is limited to that of a dimer. We then employ umbrella sampling to show that oligomers of BTA-Met and BTA-Phe are stable over those of dimers and demonstrate that this results from such weak interactions.

19.
Angew Chem Int Ed Engl ; 55(35): 10381-5, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27151204

RESUMO

We report a synthetic method to enhance the electrocatalytic activity of birnessite for the oxygen evolution reaction (OER) by intercalating Ni(2+) ions into the interlayer region. Electrocatalytic studies showed that nickel (7.7 atomic %)-intercalated birnessite exhibits an overpotential (η) of 400 mV for OER at an anodic current of 10 mA cm(-2) . This η is significantly lower than the η values for birnessite (η≈700 mV) and the active OER catalyst ß-Ni(OH)2 (η≈550 mV). Molecular dynamics simulations suggest that a competition among the interactions between the nickel cation, water, and birnessite promote redox chemistry in the spatially confined interlayer region.


Assuntos
Técnicas Eletroquímicas , Níquel/química , Oxigênio/química , Água/química , Catálise , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
20.
J Chem Phys ; 142(2): 024502, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25591367

RESUMO

An understanding of density fluctuations in bulk water has made significant contributions to our understanding of the hydration and interactions of idealized, purely repulsive hydrophobic solutes. To similarly inform the hydration of realistic hydrophobic solutes that have dispersive interactions with water, here we characterize water density fluctuations in the presence of attractive fields that correspond to solute-water attractions. We find that when the attractive field acts only in the solute hydration shell, but not in the solute core, it does not significantly alter water density fluctuations in the solute core region. We further find that for a wide range of solute sizes and attraction strengths, the free energetics of turning on the attractive fields in bulk water are accurately captured by linear response theory. Our results also suggest strategies for more efficiently estimating hydration free energies of realistic solutes in bulk water and at interfaces.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Água/química , Modelos Químicos , Solventes/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA