Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Mech Methods ; 32(1): 37-48, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34353230

RESUMO

Metal copper oxide nanoparticles (nano-CuO) are under mass production and have been widely utilized in many fields including catalysis, gas sensors, semiconductor materials, etc. The broad applications of nano-CuO have increased the possibility of risk to incidental exposure to the environment, and therefore, an in-depth investigation of their effects on live cells is required. This study investigated the impact of the nano-CuO on SH-SY5Y cells, and findings showed that the ratio of LC3-II/LC3-I was significantly increased in SH-SY5Y cells when the cells were treated with nano-CuO. However, if the autophagy inhibitor Bafilomycin A1 (Baf A1) was co-treated, the ratio of LC3-II/LC3-I was further improved. These outcomes might indicate that autophagy flux was permanently elevated by adding nano-CuO. Further results found highly activated levels of long noncoding RNAs (lncRNAs) under nano-CuO treatment. The data illustrate a mechanism that nano-CuO can promote autophagy and activate lncCyt b-AS/ND5-AS/ND6-AS in SH-SY5Y cells and have critical implications for nanoparticle biomedical applications.


Assuntos
Autofagia , Cobre , Nanopartículas Metálicas/toxicidade , Mitocôndrias , RNA Longo não Codificante , Linhagem Celular Tumoral , Cobre/toxicidade , Humanos , Macrolídeos
2.
Brain Behav Immun ; 87: 645-659, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32097763

RESUMO

Glioblastoma is a kind of malignant tumour and originates from the central nervous system. In the last century, some researchers and clinician have noticed that the psychosocial and neurocognitive functioning of patients with malignant gliomas can be impaired. Many clinical studies have demonstrated that part of patients, adults or children, diagnosed with glioblastoma will suffer from cognitive deficiency during their clinical course, especially in long-term survivors. Many nanoparticles (NPs) can inhibit the biological functions of tumours by modulating tumour-associated inflammation, which provokes angiogenesis and tumour growth. As one of the best antiviral nanoparticles (AVNPs), AVNP2 is the 2nd generation of AVNP2 that have been conjugated to graphite-graphene for improving physiochemical performance and reducing toxicity. AVNP2 inactivates viruses, such as the H1N1 and H5N1influenza viruses and even the SARS coronavirus, while it inhibits bacteria, such as MRSA and E. coli. As antimicrobials, nanoparticles are considered to be one of the vectors for the administration of therapeutic compounds. Yet, little is known about their potential functionalities and toxicities to the neurotoxic effects of cancer. Herein, we explored the functionality of AVNP2 on inhibiting C6 in glioma-bearing rats. The novel object-recognition test and open-field test showed that AVNP2 significantly improved the neuro-behaviour affected by C6 glioma. AVNP2 also alleviated the decline of long-term potentiation (LTP) and the decreased density of dendritic spines in the CA1 region induced by C6. Western blot assay and immunofluorescence staining showed that the expressions of synaptic-related proteins (PSD-95 and SYP) were increased, and these findings were in accordance with the results mentioned above. It revealed that the sizes of tumours in C6 glioma-bearing rats were smaller after treatment with AVNP2. The decreased expression of inflammatory factors (IL-1ß, IL-6 and TNF-α) by Western blotting assay and ELISA, angiogenesis protein (VEGF) by Western blotting assay and other related proteins (BDNF, NF-ĸB, iNOS and COX-2) by Western blotting assay in peri-tumour tissue indicated that AVNP2 could control tumour-associated inflammation, thus efficiently ameliorating the local inflammatory condition and, to some extent, inhibiting angiogenesis in C6-bearing rats. In conclusion, our results suggested that AVNP2 could have an effect on the peri-tumor environment, obviously restraining the growth progress of gliomas, and eventually improving cognitive levels in C6-bearing rats.


Assuntos
Antivirais/uso terapêutico , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/psicologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Encefalite/etiologia , Encefalite/prevenção & controle , Glioma/complicações , Glioma/psicologia , Nanopartículas/uso terapêutico , Animais , Comportamento Animal , Peso Corporal/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Disfunção Cognitiva/psicologia , Citocinas/biossíntese , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Transplante de Neoplasias , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
3.
Neurochem Res ; 45(7): 1602-1613, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32274628

RESUMO

Recently, possible applications of zinc oxide nanoparticles (nano-ZnO) have been extensively studied owing to their ease of synthesis. However, the effect of nano-ZnO on the nervous system remains unclear. This study investigates the action of nano-ZnO on SH-SY5Y neuroblastoma cells. We found that nano-ZnO (0-50 µg/mL) induced a significant decrease in cell survival rate in a dose-dependent manner, and increased LC3 puncta formation. However, the apoptosis was not affected by nano-ZnO, because the protein levels of cytochrome c, caspase-3, Bcl-xL, and BAX were not varied by the nano-ZnO treatment. Nano-ZnO increased Ca2+ entry and the expression of TRPC6.The results suggested that nano-ZnO increased [Ca2+] through the TRPC-dependent Ca2+ influx, since Ca2+ influx can be prevented by the TRPC inhibitor. Furthermore, cells on nano-ZnO-treatment groups displayed loss of F-actin in a dose dependent manner, which also could be prevented by TRPC inhibitor. Herein, we demonstrated that the nano-ZnO activated TRPC6 channel, thereby increasing the Ca2+ flux and resulting in increased autophagy. Nano-ZnO could have possible anticancer effects in neuroblastoma by inhibiting the proliferation of tumor cells. However, we should also pay attention toward the biosecurity of nano materials.


Assuntos
Autofagia/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Nanopartículas/toxicidade , Canal de Cátion TRPC6/metabolismo , Óxido de Zinco/toxicidade , Autofagia/fisiologia , Sinalização do Cálcio/fisiologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos
4.
Neurochem Res ; 44(2): 428-440, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30539408

RESUMO

Chronic hypoxic damage is one of the most common pathogenic factors that can cause neurodegenerative disorder in most cases. Etidronate (Eti) is one of the best-known earlier-generations of bisphosphonate derivatives for the treatment of bone-loss related diseases. Building on the preceding study of our laboratory, we found that Eti showed neuroprotective effects against 2-vessel occlusion induced vascular dementia (VD) in rats. Therefore, in this study, we attempted to elucidate the mechanism of action, which Eti protected cells from chronic hypoxic damage caused by CoCl2 in SH-SY5Y cells in vitro. Our data showed that the pretreatment with 100 µM Eti partially improved hypoxic damage in cell viability and reduced the hypoxia-inducible factor-1α (HIF-1α) expression, which indicated chronic hypoxic level. Furthermore, the protein expression of TRPC5 channel and its mediated intracellular calcium ion concentration ([Ca2+]i) were decreased. In addition, the apoptosis-related proteins caspase-9, and caspase-3 as well as calcium/calmodulin-dependent protein kinase II (CaMK-II) were down-regulated after treatment with Eti. In conclusion, Eti shows neuroprotective effects on SH-SY5Y cells injured by CoCl2 through resisting apoptosis caused by calcium influx, which may be related to the inhibition of HIF-1α protein and the decreased TRPC5 channel protein.


Assuntos
Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Ácido Etidrônico/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Canais de Cátion TRPC/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia
5.
J Thromb Thrombolysis ; 47(3): 392-395, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30739303

RESUMO

Impaired endogenous fibrinolysis is an adverse prognostic biomarker in acute coronary syndrome (ACS). Abnormally dense in vitro fibrin thrombi have been demonstrated in ACS patients and related to hypofibrinolysis using cumbersome, laboratory-based methods. We aimed to assess endogenous fibrinolysis using a point-of-care technique and relate this to clot architecture. From patients with ST-segment elevation myocardial infarction (STEMI), venous blood was drawn immediately on arrival to assess thrombotic status. Blood was assessed using the point-of-care Global Thrombosis Test which measures occlusive thrombus formation under high shear and subsequently endogenous fibrinolysis (lysis time, LT). Two samples per patient were run in parallel. In one channel, the measurement was allowed to proceed as normal. In the other, after occlusion, thrombus was extracted, washed, fixed in glutaraldehyde, dried, sputter-coated, and assessed using scanning electron microscope. Endogenous fibrinolysis was strongly associated fibrin fibre thickness (p = 0.0001). As LT increased (less efficient fibrinolysis), the fibrin network of the thrombus was significantly more compact and dense, with thinner fibrin fibres and smaller gaps. Fibrin fibre thickness correlated inversely with LT (r = - 0.89, p = 0.001). Adverse clot architecture in vitro is directly related to impaired endogenous fibrinolysis using a relatively new point-of-care technique in patients with STEMI. This may transform the relevance of fibrin clot architecture from an off-line laboratory association to being directly relevant to endogenous fibrinolysis at the patient bedside, which could be used as a near-patient test to guide prognosis and assess the effect of treatment.


Assuntos
Fibrinólise , Microscopia Eletrônica de Varredura/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Trombose/diagnóstico por imagem , Síndrome Coronariana Aguda/fisiopatologia , Coleta de Amostras Sanguíneas , Fibrina/análise , Humanos , Prognóstico , Estudos Prospectivos
6.
Int Wound J ; 16(3): 730-736, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30767437

RESUMO

Cinnamon-containing polycaprolactone (PCL) bandages were produced by pressurised gyration and their anti-fungal activities against Candida albicans were investigated. It was found that by preparing and spinning polymer solutions of cinnamon with PCL, fibres capable of inhibiting fungal growth could be produced, as observed in disk diffusion tests for anti-fungal susceptibility. Fascinatingly, compared with raw cinnamon powder, the novel cinnamon-loaded fibres had outstanding long-term activity. The results presented here are very promising and may indeed accelerate a new era of using completely natural materials in biomedical applications, especially in wound healing.


Assuntos
Antifúngicos/química , Bandagens , Candida albicans/efeitos dos fármacos , Cinnamomum zeylanicum/química , Extratos Vegetais/química , Poliésteres/química
7.
J Neurochem ; 140(3): 476-484, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27874976

RESUMO

Vascular dementia is a neurodegenerative disorder caused by the reduction of cerebral blood flow. It shows a progressive cognitive impairment. In our previous study, we found that etidronate (ET) showed neuroprotective effects against glutamate-injured PC12 cells. Thus, in this study, we aimed to observe the effects of ET on learning and memory impairment and the related mechanism in 2-vessel occlusion (2VO) model rats. Rats were administered a permanent bilateral common carotid artery occlusion to induce vascular dementia model. Two weeks later, 2VO model rats were treated with ET (20 mg/kg/day i.p.) for 1 week. Results showed that ET improved the spatial learning and memory function in 2VO rats detected by Morris water maze experiment. A reduced long-term potentiation was also rescued by ET treatment in 2VO rats. Moreover, the long-term potentiation-related proteins, calcium/calmodulin-dependent protein kinase II (CaMKII), NMDAR 2B and PSD95 were up-regulated after treatment with ET. By testing the levels of malondialdehyde and superoxide dismutase in 2VO rats, we discovered that ET lowered oxidative stress. Furthermore, ET displayed a better anti-apoptosis ability through detecting the levels of Bcl-2 and Bax protein and terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells. In conclusion, ET shows neuroprotective effects on 2VO rats through rescuing spatial working memory deficits, and a possible mechanism may be related to the increased synaptic transmission and the inhibition of oxidative stress and apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Demência Vascular/tratamento farmacológico , Modelos Animais de Doenças , Ácido Etidrônico/uso terapêutico , Transmissão Sináptica/efeitos dos fármacos , Animais , Apoptose/fisiologia , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Transtornos Cerebrovasculares/tratamento farmacológico , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/patologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Demência Vascular/metabolismo , Demência Vascular/patologia , Ácido Etidrônico/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia
8.
Neurochem Res ; 41(4): 844-54, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26559687

RESUMO

Etidronate is one of the best known bisphosphonates (BP) derivatives. It is often used as a reference drug in research related to hypercalcaemia and other common bone diseases. 2,3,3-trisphosphonate (TrisPP) is brand new analogue of BP, that also contains a 'germinal bisphosphonate' unit with an additional phosphoryl group attached in proximity to the BP unit. It is known that BPs bind to calcium by chemisorptions to form Ca-BP complexes through (O)P-C-P(O) moiety and hydrogen coordinations, and so they suppress calcium flow by interfering with Ca(2+) channel operations. The mechanistic actions of BP, involving interactions and regulations of Ca(2+), are somewhat similar to the pathogenesis of well-known neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease. To investigate if neuroprotective effects are exhibited by the compounds of interests, we used a rat adrenal pheochromocytoma cell line (PC12) as our in vitro model to observe any occurrence of neuron inter-reflection. We pre-treated these PC12 cells with etidronate and TrisPP before challenging the cells with a high concentration of the neurotoxin, glutamate. Our data showed that pre-treatment with 100 µM etidronate partially ameliorated the glutamate-induced decrease in cell viability (47 %), whereas pre-treating cells with 10-100 µM TrisPP showed remarkable cell protection (78-86 %). Moreover, pre-treatments of the cells with etidronate or TrisPP attenuated cell apoptosis, reactive oxygen species generation, Ca(2+) overloading and caspase-3 protein expression, which were associated with a remarkable increase in superoxide dismutase activity in our glutamate-injured PC12 cells. Therefore, this study supports the notion that etidronate and TrisPP may be promising neuroprotective agents.


Assuntos
Ácido Etidrônico/farmacologia , Ácido Glutâmico/toxicidade , Fármacos Neuroprotetores/farmacologia , Organofosfonatos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
9.
J Mater Sci Mater Med ; 26(2): 114, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25665852

RESUMO

Copper (Cu)-bearing stainless steel with release of Cu2+ ions is a novel material for coronary stents that could reduce the in-stent restenosis after the stent implantation. The inflammation has been recently recognized as an important factor to smooth muscle cells proliferation, thrombosis, and hence the restenosis post-angioplasty. The objective of this study is to further investigate the effect and relevant mechanism of Cu-bearing stainless steel (316L-Cu SS) on the inflammation reaction after stent implantation. The results demonstrated that, compared with commercial coronary stent material (316L SS), 316L-Cu SS could inhibit the inflammation caused by endothelial dysfunction through blockading the inflammatory factors (TNF-α, IL-1ß, 6, 8), which would then reduce the recruitment and infiltration of leukocytes, rather than have direct effect on leukocytes. This finding further explained the reduction effect of 316L-Cu SS on in-stent restenosis from a novel view.


Assuntos
Cobre/química , Reestenose Coronária/imunologia , Oclusão de Enxerto Vascular/imunologia , Aço Inoxidável/química , Stents/efeitos adversos , Ligas/química , Reestenose Coronária/etiologia , Reestenose Coronária/prevenção & controle , Citocinas/imunologia , Análise de Falha de Equipamento , Oclusão de Enxerto Vascular/etiologia , Oclusão de Enxerto Vascular/prevenção & controle , Humanos , Teste de Materiais , Ativação de Neutrófilo/imunologia , Desenho de Prótese
10.
ACS Omega ; 9(18): 19848-19858, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737088

RESUMO

The distinctive physical characteristics and wide range of potential applications in optoelectronic and photovoltaic devices have ignited significant interest in two-dimensional materials. Intensive research attention has been focused on Janus transition metal dichalcogenides due to their unique properties resulting from symmetry disruption and their potential in photocatalysis applications. Motivated by the current fascination with Janus TMD heterostructures, we conducted first-principles calculations to examine the stability, electronic, and optical properties of monolayers consisting of ZrSSe, SnSSe, and the ZrSSe/SnSSe heterostructure. The results indicate that the Janus ZrSSe/SnSSe heterostructure exhibits a structural and mechanical stability. Using the HSE06 functional, the ZrSSe/SnSSe heterostructure shows an indirect band gap of 1.20 eV, and band edge analysis reveals a type-II band alignment. The potential for photo/electrocatalysis in the ZrSSe/SnSSe heterostructure for water splitting or generating reactive oxygen species (ROS) has been explored, and it was found that the oxygen evolution reaction (OER) can spontaneously activate in acidic (pH = 0) media under light irradiation, with a potential of U = 1.82 eV. Additionally, the ZrSSe/SnSSe heterostructure exhibits strong light absorption across a wide range, from visible light to the ultraviolet region, at various levels. These findings open up possibilities for the application of ZrSSe/SnSSe-based materials in optoelectronic devices.

11.
Materials (Basel) ; 17(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38255583

RESUMO

This study aims to address the challenges associated with conventional metallic bone fixation plates in biomechanical applications, such as stainless steel and titanium alloys, including stress shielding, allergic reactions, corrosion resistance, and interference with medical imaging. The use of materials with a low elastic modulus is regarded as an effective approach to overcome these problems. In this study, the impact of different types of chopped carbon fiber-reinforced polyether ether ketone (CCF/PEEK) functionally graded material (FGM) bone plates on stress shielding under static and instantaneous dynamic loading was explored using finite element analysis (FEA). The FGM bone plate models were established using ABAQUS and the user's subroutine USDFLD and VUSDFLD, and each model was established with an equivalent overall elastic modulus and distinctive distributions. The results revealed that all FGM bone plates exhibited lower stress shielding effects compared to metal bone plates. Particularly, the FGM plate with an elastic modulus gradually increased from the centre to both sides and provided maximum stress stimulation and the most uniform stress distribution within the fractured area. These findings offer crucial insights for designing implantable medical devices that possess enhanced mechanical adaptability.

12.
PLoS One ; 19(2): e0296916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38335221

RESUMO

Equilibrium molecular dynamics (EMD) simulations have been performed to investigate the structural analysis and thermal conductivity (λ) of semiconducting (8,0) and metallic (12,0) zigzag single-walled carbon nanotubes (SWCNTs) for varying ±Î³(%) strains. For the first time, the present outcomes provide valuable insights into the relationship between the structural properties of zigzag SWCNTs and corresponding thermal behavior, which is essential for the development of high-performance nanocomposites. The radial distribution function (RDF) has been employed to assess the buckling and deformation understandings of the (8,0) and (12,0) SWCNTs for a wide range of temperature T(K) and varying ±Î³(%) strains. The visualization of SWCNTs shows that the earlier buckling and deformation processes are observed for semiconducting SWCNTs as compared to metallic SWCNTs for high T(K) and it also evident through an abrupt increase in RDF peaks. The RDF and visualization analyses demonstrate that the (8,0) SWCNTs can more tunable under compressive than tensile strains, however, the (12,0) zigzag SWCNTs indicate an opposite trend and may tolerate more tensile than compressive strains. Investigations show that the tunable domain of ±Î³(%) strains decreases from (-10%≤ γ ≤+19%) to (-5%≤ γ ≤+10%) for (8,0) SWCNTs and the buckling process shifts to lower ±Î³(%) for (12,0) SWCNTs with increasing T(K). For intermediate-high T(K), the λ(T) of (12,0) SWCNTs is high but the (8,0) SWCNTs show certainly high λ(T) for low T(K). The present λ(T, ±Î³) data are in reasonable agreement with parts of previous NEMD, GK-HNEMD data and experimental investigations with simulation results generally under predicting the λ(T, ±Î³) by the ∼1% to ∼20%, regardless of the ±Î³(%) strains, depending on T(K). Our simulation data significantly expand the strain range to -10% ≤ γ ≤ +19% for both zigzag SWCNTs, depending on temperature T(K). This extension of the range aims to establish a tunable regime and delve into the intrinsic characteristics of zigzag SWCNTs, building upon previous work.


Assuntos
Simulação de Dinâmica Molecular , Nanotubos de Carbono , Nanotubos de Carbono/química
13.
Sci Rep ; 14(1): 2482, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291076

RESUMO

Various drugs have been used for the treatment of leishmaniasis, but they often have adverse effects on the body's organs. In this study, we aimed to explore the effects of one type of drug, Miltefosine (MIL), and its analogue or modifier, liposomal Miltefosine (NMIL), on several fetal organs using both in silico analysis and practical tests on chicken embryos. Our in silico approach involved predicting the affinities of MIL and NMIL to critical proteins involved in leishmaniasis, including Vascular Endothelial Growth Factor A (VEGF-A), the Kinase insert domain receptor (KDR1), and apoptotic-regulator proteins (Bcl-2-associate). We then validated and supported these predictions through in vivo investigations, analyzing gene expression and pathological changes in angiogenesis and apoptotic mediators in MIL- and NMIL-treated chicken embryos. The results showed that NMIL had a more effective action towards VEGF-A and KDR1 in leishmaniasis, making it a better candidate for potential operative treatment during pregnancy than MIL alone. In vivo, studies also showed that chicken embryos under MIL treatment displayed less vascular mass and more degenerative and apoptotic changes than those treated with NMIL. These results suggest that NMIL could be a better treatment option for leishmaniasis during pregnancy.


Assuntos
Antiprotozoários , Leishmaniose Visceral , Embrião de Galinha , Animais , Leishmaniose Visceral/tratamento farmacológico , Antiprotozoários/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Fosforilcolina
14.
J Colloid Interface Sci ; 672: 266-278, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843679

RESUMO

Diabetic wound, which is chronic skin disease, poses a significant challenge in clinical practice because of persistent inflammation and impaired angiogenesis. Recently, hydrogen has emerged as a novel therapeutic agent due to its superior antioxidant and anti-inflammatory properties. In this study, we engineered a poly (lactic-co-glycolic acid) (PLGA) electrospun nanofibre membrane loaded with citric acid (CA) and iron (Fe) nanoparticles, referred to as Fe@PLGA + CA. Our in vitro assays demonstrated that the Fe@PLGA + CA membrane continuously generated and released hydrogen molecules via a chemical reaction between Fe and CA in an acidic microenvironment created by CA. We also discovered that hydrogen can ameliorate fibroblast migration disorders by reducing the levels of matrix metalloproteinase 9 (MMP9). Furthermore, we confirmed that hydrogen can scavenge or biochemically neutralise accumulated reactive oxygen species (ROS), inhibit pro-inflammatory responses, and induce anti-inflammatory reactions. This, in turn, promotes vessel formation, wound-healing and accelerates skin regeneration. These findings open new possibilities for using elemental iron in skin dressings and bring us one step closer to implementing hydrogen-releasing biomedical materials in clinical practice.


Assuntos
Hidrogênio , Nanofibras , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Cicatrização , Cicatrização/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanofibras/química , Hidrogênio/química , Hidrogênio/farmacologia , Animais , Ferro/química , Nanopartículas Metálicas/química , Membranas Artificiais , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Tamanho da Partícula , Propriedades de Superfície
15.
Biochem Biophys Rep ; 39: 101804, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39193225

RESUMO

The present study uses molecular docking and dynamic simulations to evaluate the inhibitory effect of flavonoid glycosides-based compounds on coronavirus Main protease (Mpro) and RNA polymerase. The Molegro Virtual Docker (MVD) software is utilized to simulate and calculate the binding parameters of compounds with coronavirus. The docking results show that the selected herbal compounds are more effective than those of chemical compounds. It is also revealed that five herbal ligands and two chemical ligands have the best docking scores. Furthermore, a Molecular Dynamics (MD) simulation was conducted for Hesperidin, confirming docking results. Analysis based on different parameters such as Root-mean-square deviation (RMSD), Root mean square fluctuation (RMSF), Radius of gyration (Rg), Solvent accessibility surface area (SASA), and the total number of hydrogen bonds suggests that Hesperidin formed a stable complex with Mpro. Absorption, Distribution, Metabolism, Excretion, And Toxicity (ADMET) analysis was performed to compare Hesperidin and Grazoprevir as potential antiviral medicines, evaluating both herbal and chemical ligand results. According to the study, herbal compounds could be effective on coronavirus and are admissible candidates for developing potential operative anti-viral medicines. Hesperidin was found to be the most acceptable interaction. Grazoprevir is an encouraging candidate for drug development and clinical trials, with the potential to become a highly effective Mpro inhibitor. Compared to RNA polymerase, Mpro showed a greater affinity for bonding with Hesperidin. van der Waals and electrostatic energies dominated, creating a stable Hesperidin-Mpro and Hesperidin-RNA polymerase complex.

16.
Bioengineering (Basel) ; 10(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38002383

RESUMO

With the rise of antibiotic resistance, the drive to discover novel antimicrobial substances and standard testing methods with the aim of controlling transmissive diseases are substantially high. In healthcare sectors and industries, although methods for testing antibiotics and other aqueous-based reagents are well established, methods for testing nanomaterials, non-polar and other particle-based suspensions are still debatable. Hence, utilities of ISO standard validations of such substances have been recalled where corrective actions had to be taken. This paper reports a serial analysis obtained from testing the antimicrobial activities of 10 metallic-based nanomaterials against 10 different pathogens using five different in vitro assays, where the technique, limitation and robustness of each method were evaluated. To confirm antimicrobial activities of metallic-based nanomaterial suspensions, it was found that at least two methods must be used, one being the agar well diffusion method, which was found to be the most reliable method. The agar well diffusion method provided not only information on antimicrobial efficacy through the size of the inhibitory zones, but it also identified antimicrobial ions and synergistic effects released by the test materials. To ascertain the effective inhibitory concentration of nanoparticles, the resazurin broth dilution method is recommended, as MIC can be determined visually without utilising any equipment. This method also overcomes the limit of detection (LoD) and absorbance interference issues, which are often found in the overexpression of cell debris and nanoparticles or quantum dots with optical profiles. In this study, bimetallic AgCu was found to be the most effective antimicrobial nanoparticle tested against across the bacterial (MIC 7 µg/mL) and fungal (MIC 62.5 µg/mL) species.

17.
Carbohydr Polym ; 304: 120516, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36641162

RESUMO

Cyclodextrin metal-organic frameworks (CD-MOF) are a class of biocompatible MOF with a great potential in drug delivery applications. Original CD-MOF crystals are fragile and large (0.2-1 mm), which are less useful in pharmaceutical applications. Cetyltrimethylammonium bromide and long chain poly(ethylene) glycol, used in size modulation to produce nanosized CD-MOF can compromise the biocompatibility, and physiochemical properties of CD-MOF as their complete removal from frameworks is difficult. To avoid the use of above-mentioned modulators, herein, we demonstrate the synthesis of nanosized CD-MOF using triethylamine (TEA) as a modulator to reduce their size to ~254 nm. The MOF characteristics such as crystal and chemical structure remain unaffected and the surface area of CD-MOF synthesised with TEA is measured 1075.5 m2/g, almost 50 % higher than those of synthesised using bulky modulators. The improved CD-MOF architecture utilized for the in-situ synthesis of silver nanoparticles resulted in enhanced antimicrobial efficacy tested against Staphylococcus aureus and Escherichia coli bacteria and Candida albicans fungus. And minimum inhibitory concentration (MIC) is recorded in the range of 31-15 µg/mL. Overall, the structural improvement in CD-MOF supported with thorough comparative investigations and enhanced antimicrobial efficacy could be very helpful in further establishing them in biomedicine field.


Assuntos
Anti-Infecciosos , Ciclodextrinas , Nanopartículas Metálicas , Estruturas Metalorgânicas , gama-Ciclodextrinas , gama-Ciclodextrinas/farmacologia , gama-Ciclodextrinas/química , Prata/farmacologia , Ciclodextrinas/química , Estruturas Metalorgânicas/química , Polietilenoglicóis
18.
ACS Omega ; 8(39): 36171-36178, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810692

RESUMO

Copper nanoparticles (CuNPs) and gold nanoclusters (AuNCs) show a high catalytic performance in generating hydrogen peroxide (H2O2), a property that can be exploited to kill disease-causing microbes and to carry carbon-free energy. Some combinations of NPs/NCs can generate synergistic effects to produce stronger antiseptics, such as H2O2 or other reactive oxygen species (ROS). Herein, we demonstrate a novel facile AuNC surface decoration method on the surfaces of CuNPs using galvanic displacement. The Cu-Au bimetallic NPs presented a high selective production of H2O2 via a two-electron (2e-) oxygen reduction reaction (ORR). Their physicochemical analyses were conducted by scanning electron microscopy (SEM), transmitting electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). With the optimized Cu-Au1.5NPs showing their particle sizes averaged in 53.8 nm, their electrochemical analysis indicated that the pristine AuNC structure exhibited the highest 2e- selectivity in ORR, the CuNPs presented the weakest 2e- selectivity, and the optimized Cu-Au1.5NPs exhibited a high 2e- selectivity of 95% for H2O2 production, along with excellent catalytic activity and durability. The optimized Cu-Au1.5NPs demonstrated a novel pathway to balance the cost and catalytic performance through the appropriate combination of metal NPs/NCs.

19.
Heliyon ; 9(10): e20430, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37810809

RESUMO

The advancements in nanoscience have brought attention to the potential of utilizing nanoparticles as carriers for oral insulin administration. This study aims to investigate the effectiveness of synthesized polymeric mesoporous silica nanoparticles (MSN) as carriers for oral insulin and their interactions with insulin and IR through in-silico docking. Diabetic rats were treated with various MSN samples, including pure MSN, Amin-grafted MSN/PEG/Insulin (AMPI), Al-grafted MSN/PEG/Insulin (AlMPI), Zinc-grafted MSN/PEG/Insulin (ZNPI), and Co-grafted MSN/PEG/Insulin (CMPI). The nanocomposites were synthesized using a hybrid organic-inorganic method involving MSNs, graphene oxide, and insulin. Characterization of the nanocomposites was conducted using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). In vivo tests included the examination of blood glucose levels and histopathological parameters of the liver and pancreas in type 1 diabetic rats. The MSN family demonstrated a significant reduction in blood glucose levels compared to the diabetic control group (p < 0.001). The synthesized nanocomposites exhibited safety, non-toxicity, fast operation, self-repairing pancreas, cost-effectiveness, and high efficiency in the oral insulin delivery system. In the in-silico study, Zn-grafted MSN, Co-grafted MSN, and Al-grafted MSN were selected. Docking results revealed strong interactions between MSN compounds and insulin and IR, characterized by the formation of hydrogen bonds and high binding energy. Notably, Co-grafted MSN showed the highest docking scores of -308.171 kcal/mol and -337.608 kcal/mol to insulin and IR, respectively. These findings demonstrate the potential of polymeric MSN as effective carriers for oral insulin, offering promising prospects for diabetes treatment.

20.
Front Oncol ; 13: 1098429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937441

RESUMO

Background: Epithelial ovarian cancer is very common in women and causes hundreds of deaths per year worldwide. Chemotherapy drugs including cisplatin have adverse effects on patients' health. Complementary treatments and the use of herbal medicines can help improve the performance of medicine. 6-Gingerol is the major pharmacologically active component of ginger. In this study, we compared the effects of 6-gingerol, cisplatin, and their combination in apoptotic and angiogenetic activities in silico, in test tubes, and in in vivo assays against two ovarian cancer cell lines: OVCAR-3 and human umbilical vein endothelial cells (HUVECs). Methods: The drug-treated cell lines were evaluated for their cytotoxicity, cell cycle, and apoptotic and angiogenetic gene expression changes. Results: The proportion of apoptosis treated by 6-gingerol coupled with cisplatin was significantly high. In the evaluation of the cell cycle, the combination therapy also showed a significant promotion of a higher extent of the S sequence. The expression of p53 level, Caspase-8, Bax, and Apaf1 genes was amplified again with combination therapy. Conversely, in both cell lines, the cumulative drug concentrations reduced the expression of VEGF, FLT1, KDR, and Bcl-2 genes. Similarly, in the control group, combination treatment significantly decreased the expression of VEGF, FLT1, KDR, and Bcl-2 genes in comparison to cisplatin alone. Conclusions: The findings of the present study demonstrated that the cisplatin and 6-gingerol combination is more effective in inducing apoptosis and suppressing the angiogenesis of ovarian cancer cells than using each drug alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA