Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(2): 715-723, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38147540

RESUMO

Solar-driven clean water production is challenged by VOCs (volatile organic compounds), which pose health risks in distilled water. Herein, we developed a Cu/W18O49@Graphene photothermal-photocatalytic material addressing VOCs contamination. Plasmonic coupling between Cu and W18O49 enhances light absorption, and 1-2 layers of graphene encapsulation protects oxygen vacancies within W18O49 while facilitating hot electron extraction, effectively mitigating their ultrafast relaxation. Density functional theory calculations revealed enhanced VOCs adsorption on graphene. These synergies address oxygen vacancy decay in W18O49 and provide more active sites for gas-liquid-solid triphase photocatalytic reactions. Integrated with a three-dimensional floating evaporator substrate, the optimized Cu/W18O49@Graphene material achieved an effective water evaporation rate of 1.41 kg m-2 h-1 (efficiency of 88.6%), exceptional stability (>120 h), and remarkable 99% phenol removal under 1 sun irradiation (1 kW m-2). This work provides a promising solution to mitigate VOCs contamination in solar-driven water evaporation.

2.
Small ; 20(16): e2308408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032173

RESUMO

The weak electronic interaction at metal-photocatalyst heterointerfaces often compromises solar-to-fuel performance. Here, a trifunctional Schottky junction, involving chemically stabilized ultrafine platinum nanoparticles (Pt NPs, ≈3 nm in diameter) on graphitic carbon nitride nanosheets (CNs) is proposed. The Pt-CN electronic interaction induces a 1.5% lattice compressive strain in Pt NPs and maintains their ultrafine size, effectively preventing their aggregation during photocatalytic reactions. Density functional theory calculations further demonstrate a significant reduction in the Schottky barrier at the chemically bonded CN-Pt heterointerface, facilitating efficient interfacial electron transfer, as supported by femtosecond transient absorption spectra (fs-TAS) measurements. The combined effects of lattice strain, stabilized Pt NPs, and efficient interfacial charge transport collaboratively enhance the photocatalytic performance, leading to over an 11-fold enhancement in visible light H2 production (8.52 mmol g-1 h-1) compared to the CN nanosheets with the in situ photo-deposited Pt NPs (0.76 mmol g-1 h-1). This study highlights the effectiveness of strong metal-semiconductor electronic interactions and underscores the potential for developing high-efficiency photocatalysts.

3.
Angew Chem Int Ed Engl ; 63(30): e202404660, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38714487

RESUMO

Oxygen vacancies (OV) in nonmetallic plasmonic photocatalysts can decrease the energy barrier for CO2 reduction, boosting C1 intermediate production for potential C2 formation. However, their susceptibility to oxidation weakens C1 intermediate adsorption. Herein we proposed a "photoelectron injection" strategy to safeguard OV in W18O49 by creating a W18O49/ZIS (W/Z) plasmonic photocatalyst. Moreover, photoelectrons contribute to the local multi-electron environment of W18O49, enhancing the intrinsic excitation of its hot electrons with extended lifetimes, as confirmed by in situ XPS and femtosecond transient absorption analysis. Density functional theory calculations revealed that W/Z with OV enhances CO2 adsorption, activating *CO production, while reducing the energy barrier for *COH production (0.054 eV) and subsequent *CO-*COH coupling (0.574 eV). Successive hydrogenation revealed that the free energy for *CH2CH2 hydrogenation (0.108 eV) was lower than that for *CH2CH2 desorption for C2H4 production (0.277 eV), favouring C2H6 production. Consequently, W/Z achieves an efficient C2H6 activity of 653.6 µmol g-1 h-1 under visible light, with an exceptionally high selectivity of 90.6 %. This work offers a new strategy for the rational design of plasmonic photocatalysts with high selectivity for C2+ products.

4.
Small ; 19(18): e2207173, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36740721

RESUMO

The relatively short-lived excited states, such as the nascent electron-hole pairs (excitons) and the shallow trapping states, in semiconductor-based photocatalysts produce an exceptionally high charge carrier recombination rate, dominating a low solar-to-fuel performance. Here, a π-conjugated in-plane heterostructure between graphitic carbon nitride (g-CN) and carbon rings (Crings ) (labeling g-CN/Crings ) is effectively synthesized from the thermolysis of melamine-citric acid aggregates via a microwave-assisted heating process. The g-CN/Crings in-plane heterostructure shows remarkably suppressed excited-state decay and increased charge carrier population in photocatalysis. Kinetics analysis from the femtosecond time-resolved transient absorption spectroscopy illustrates that the g-CN/Crings π-conjugated heterostructure produces slower exciton annihilation (τ1  = 7.9 ps) and longer shallow electron trapping (τ2  = 407.1 ps) than pristine g-CN (τ1  = 3.6 ps, τ2  = 264.1 ps) owing to Crings incorporation, both of which enable more photoinduced electrons to participate in the photocatalytic reactions, thereby realizing photoactivity enhancement. As a result, the photocatalytic activity exhibits an eightfold enhancement in visible-light-driven H2 generation. This work provides a viable route of constructing π-conjugated in-plane heterostructures to suppress the excited-state decay and improve the photocatalytic performance.

5.
Nano Lett ; 21(4): 1709-1715, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33586984

RESUMO

Solar vapor generation represents a promising approach to alleviate water shortage for producing fresh water from undrinkable water resources. Although Cu-based plasmonics have attracted tremendous interest due to efficient light-to-heat conversion, their application faces great challenges in the oxidation resistance of Cu and low evaporation rate. Herein, a hybrid of three-dimensional carbonized loofah sponges and graphene layers encapsulated Cu nanoparticles is successfully synthesized via a facile pyrolysis method. In addition to effective light harvesting, the localized heating effect of stabilized Cu nanoparticles remarkably elevated the surface temperature of Cu@C/CLS to 72 °C, and a vapor generation rate as high as 1.54 kg m-2 h-1 with solar thermal efficiency reaching 90.2% under 1 Sun illumination was achieved. A study in the purification of sewage and muddy water with Cu@C/CLS demonstrates a promising perspective in a practical application. These results may offer a new inspiration for the design of efficient nonprecious Cu-based photothermal materials.

6.
Chem Commun (Camb) ; 57(7): 871-874, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33367327

RESUMO

A record ethanol production rate of 281.6 µmol g-1 h-1 for the photocatalytic conversion of methane over nitrogen vacancy-rich carbon nitride at room temperature was achieved. Systematic studies demonstrate that the CH4 was activated by the highly reactive ˙OH radicals generated, via H2O2, from the photo-reduction of O2 with H2O.

7.
Chem Commun (Camb) ; 55(86): 12900-12903, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31576839

RESUMO

One-nanometre-thick carbon cage encapsulated copper nanopaticles on SrTiO3 (STO) synthesized through a facile chemical vapour deposition method showed remarkable stability and performance for both photocatalytic hydrogen evolution and thermocatalytic reduction of 4-nitrophenol. X-ray photoelectron spectroscopy and Raman results demonstrate that the graphene cage effectively protected Cu nanoparticles from being oxidized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA