Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomolecules ; 14(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38672421

RESUMO

Captivity is an important and efficient technique for rescuing endangered species. However, it induces infertility, and the underlying mechanism remains obscure. This study used the plateau pika (Ochotona curzoniae) as a model to integrate physiological, metagenomic, metabolomic, and transcriptome analyses and explore whether dysbiosis of the gut microbiota induced by artificial food exacerbates infertility in captive wild animals. Results revealed that captivity significantly decreased testosterone levels and the testicle weight/body weight ratio. RNA sequencing revealed abnormal gene expression profiles in the testicles of captive animals. The microbial α-diversity and Firmicutes/Bacteroidetes ratio were drastically decreased in the captivity group. Bacteroidetes and Muribaculaceae abundance notably increased in captive pikas. Metagenomic analysis revealed that the alteration of flora increased the capacity for carbohydrate degradation in captivity. The levels of microbe metabolites' short-chain fatty acids (SCFAs) were significantly high in the captive group. Increasing SCFAs influenced the immune response of captivity plateau pikas; pro-inflammatory cytokines were upregulated in captivity. The inflammation ultimately contributed to male infertility. In addition, a positive correlation was observed between Gastranaerophilales family abundance and testosterone concentration. Our results provide evidence for the interactions between artificial food, the gut microbiota, and male infertility in pikas and benefit the application of gut microbiota interference in threatened and endangered species.


Assuntos
Disbiose , Microbioma Gastrointestinal , Infertilidade Masculina , Lagomorpha , Testosterona , Animais , Masculino , Disbiose/microbiologia , Disbiose/metabolismo , Infertilidade Masculina/microbiologia , Infertilidade Masculina/metabolismo , Testosterona/metabolismo , Lagomorpha/microbiologia , Testículo/microbiologia , Testículo/metabolismo , Ácidos Graxos Voláteis/metabolismo
2.
Microbiol Spectr ; 11(6): e0002023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37815332

RESUMO

IMPORTANCE: The gut microbiotas of small mammals play an important role in host energy homeostasis. However, it is still unknown whether small mammals with different enterotypes show differences in thermogenesis characteristics. Our study confirmed that plateau pikas with different bacterial enterotypes harbored distinct thermogenesis capabilities and employed various strategies against cold environments. Additionally, we also found that pikas with different fungal enterotypes may display differences in coprophagy.


Assuntos
Microbioma Gastrointestinal , Lagomorpha , Animais , Bactérias/genética , Termogênese , Lagomorpha/microbiologia , Homeostase
3.
Front Microbiol ; 12: 688554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956107

RESUMO

Several studies have shown that dietary fiber can significantly alter the composition and structure of the gut bacterial community in humans and mammals. However, few researches have been conducted on the dynamics of the bacterial community assembly across different graded levels of dietary fiber in different gut regions. To address this, 24 Durco × Bamei crossbred pigs were randomly assigned to four experimental chows comprising graded levels of dietary fiber. Results showed that the α-and ß-diversity of the bacterial community was significantly different between the cecum and the jejunum. Adding fiber to the chow significantly increased the α-diversity of the bacterial community in the jejunum and cecum, while the ß-diversity decreased. The complexity of the bacterial network increased with the increase of dietary fiber in jejunal content samples, while it decreased in cecal content samples. Furthermore, we found that stochastic processes governed the bacterial community assembly of low and medium dietary fiber groups of jejunal content samples, while deterministic processes dominated the high fiber group. In addition, deterministic processes dominated all cecal content samples. Taken together, the variation of gut community composition and structure in response to dietary fiber was distinct in different gut regions, and the dynamics of bacterial community assembly across the graded levels of dietary fiber in different gut regions was also distinct. These findings enhanced our knowledge on the bacterial community assembly processes in gut ecosystems of livestock.

4.
Front Nutr ; 8: 806646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155525

RESUMO

Gastrointestinal tract and dietary fiber (DF) are known to influence gut microbiome composition. However, the combined effect of gut segment and long-term intake of a high fiber diet on pig gut microbiota and metabolite profiles is unclear. Here, we applied 16S rRNA gene sequencing and untargeted metabolomics to investigate the effect of broad bean silage on the composition and metabolites of the cecal and jejunal microbiome in Durco × Bamei crossbred pigs. Twenty-four pigs were allotted to four graded levels of DF chow, and the content of jejunum and cecum were collected. Our results demonstrated that cecum possessed higher α-diversity and abundance of Bacteroidetes, unidentified Ruminococcaceae compared to jejunum, while jejunum possessed higher abundance of Lactobacillus, Streptococcus. DF intake significantly altered diversity of the bacterial community. The abundance of Bacteroidetes and Turicibacter increased with the increase of DF in cecum and jejunum respectively. Higher concentrations of amino acids and conjugated bile acids were detected in the jejunum, whereas free bile acids and fatty acids were enriched in the cecum. The concentrations of fatty acids, carbohydrate metabolites, organic acids, 2-oxoadipic acid, and succinate in cecum were higher in the high DF groups. Overall, the results indicate that the composition of bacteria and the microbiota metabolites were distinct in different gut segments. DF had a significant influence on the bacterial composition and structure in the cecum and jejunum, and that the cecal metabolites may further affect host health, growth, and slaughter performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA