Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomedicine ; 49: 102661, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36736869

RESUMO

Intravesical instillation has been considered an efficient route for detecting bladder cancer. However, only a small fraction of administered dose permeates into tumor tissues, and insufficient retention time limits their application. In this work, a novel intravesical bidirectional perfusion-like administered mode was developed to improve diagnostic accuracy of bladder tumor imaging. Specifically, the ultrasmall AuPd-P-FA Nanoprobe exhibit excellent NIR-II FL imaging performance due to electronic structure perturbation. Benefiting from the size advantage for kidney metabolism and FA targeting specificity, AuPd-P-FA could effectively administration to bladder tumor. When AuPd-P-FA reached maximum enrichment at 1 h post-injection, the localized and mild thermal energy produced upon laser irradiation activated a phase transition. This thermo-sensitive characteristic could prolong the retention time in bladder and the fluorescence signal could be clearly observed at 6 h post-injection with high accuracy. This novel intravesical bidirectional perfusion-like administered mode is expected to achieve a non-invasive diagnosis of early bladder cancer.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/diagnóstico por imagem , Administração Intravesical , Perfusão , Imagem Óptica
2.
Small ; 18(27): e2201179, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35665998

RESUMO

The activatable imaging technique in the second near-infrared window (NIR-II) utilizes the stimulation of cancer-associated biomarkers for specific imaging to guide precise NIR-II photothermal therapy. However, most activatable nanoprobes with single-source stimulation are insufficient in providing comprehensive information regarding the tumor, severely restricting the therapeutic optimization, especially in NIR-II photothermal therapy (PTT)-based combination therapy. Herein, a "dual-source, dual-activation" strategy-based multifunctional nanosystem, PPAC, is reported as a promising tool for activatable NIR-II fluorescence (FL)/ratiometric photoacoustic (PA) imaging-guided "localization-timing" photothermal-ion therapy (PTIT). A fibroblast activation protein (FAP)-responsive peptide to modify the surface of Pd nanosheets with excellent NIR-II absorption ability can efficiently cross-link BSA-CQ4T to realize NIR-II FL quenching, followed by the loading of Ag to construct the PPAC. Triggered by the specific cleavage with FAP on the perivascular cancer-associated fibroblasts (first source), the PPAC can correspondingly release BSA-CQ4T for rapid fluorescence recovery. The nanosystems are subsequently taken up by tumor cells, where the overexpressed H2 O2 (second source) promotes the oxidation of Ag shell to Ag+ , and further leads the real-time ratiometric PA signals (Ag-PA660/Pd-PA1050) that can monitor the Ag+ ions-related production efficiency and therapeutic performance. Intelligent integration of dual-modality imaging information can comprehensively provide the right time-point and site-specificity for selective NIR-II PTT.


Assuntos
Hipertermia Induzida , Nanopartículas , Técnicas Fotoacústicas , Linhagem Celular Tumoral , Hipertermia Induzida/métodos , Íons , Técnicas Fotoacústicas/métodos , Fototerapia/métodos , Terapia Fototérmica , Medicina de Precisão , Nanomedicina Teranóstica/métodos
3.
ACS Appl Mater Interfaces ; 15(4): 4903-4910, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36688939

RESUMO

Promoting the aggregation of nanoprobes at tumor sites and realizing precise imaging and treatment of tumors is still one of the important problems to be solved in the field of nanomedicine. Poly-2-phenylbenzobisthiazole (PB) is a novel conjugated polymer with good biocompatibility, excellent photothermal properties in the second near-infrared region (NIR-II), but poor water dispersibility. Herein, a novel self-assembly/polymerization two-in-one strategy was proposed to prepare a new family of poly-2-phenyl-benzobisthiazole-based nanoparticles. Because the hydrophobic polymer PB was well "camouflaged" in the hydrophilic polyphenol-metal networks, the prepared "Trojan horse-like" nanoparticle TF-PB exhibited good water dispersibility. Besides, TF-PB can play a role as a contrast agent for photoacoustic and magnetic resonance dual-modality imaging. When deferoxamine was artificially applied and interacted with TF-PB, the polyphenol-metal networks disintegrated and the hydrophobic material PB was exposed and started hydrophobic aggregation. Thus, it can be applied for precise enhanced photothermal therapy (PTT) in the NIR-II. Meanwhile, the aggregation process enabled non-invasive, fast, and accurate real-time monitoring by self-enhancing photoacoustic imaging. This work has realized the artificially controllable aggregation of photothermal materials in the tumor site, solved the limitations of traditional PTT, and also has good application prospects in clinical therapy.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Terapia Fototérmica , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Polímeros/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Neoplasias/patologia , Técnicas Fotoacústicas/métodos , Linhagem Celular Tumoral
4.
J Mater Chem B ; 11(1): 109-118, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36484167

RESUMO

Photodynamic therapy (PDT) has emerged as a promising strategy with higher selectivity and spatiotemporal control than conventional therapies. However, deep hypoxia in tumours has hampered the clinical use of PDT. In this study, a novel multifunctional cluster nanotheranostic agent (AuPd-BSA CN) was fabricated to generate a high amount of reactive oxygen species, regardless of oxygen dependence under 660 nm laser irradiation. The structure and properties of the AuPd-BSA CN were characterised using various technologies. The synthesised AuPd-BSA CN with high biocompatibility served as a superior photodynamic agent, showing prominent antitumour properties under laser irradiation. Additionally, the glucose oxidase-like activity of the AuPd-BSA CN synergistically enhanced the therapeutic performance. Notably, the intrinsic characteristics of the AuPd-BSA CN include dual-modal second near-infrared window fluorescence/photoacoustic imaging capabilities for monitoring and tracking the in vivo tumour therapeutic process. This work provides innovative insights into the AuPd-BSA CN as an "all-in-one" nanoplatform for cancer therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Nanomedicina Teranóstica/métodos , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Oxirredução , Microambiente Tumoral
5.
Mater Today Bio ; 17: 100478, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36388463

RESUMO

Tumor microenvironment (TME)-activated theranostics is a promising strategy to effectively identify small lesions, improve antitumor efficacy, and reduce the risk of undesired side effects. Hypoxia, as a common characteristic of TME, can serve as a preferred site for stimulus-dependent activation; however, tumor-hypoxia levels in various developmental stages exhibit different characteristics, severely limiting the response sensitivity. Herein, a circulating self-reinforcing hypoxic nanoamplifier (CGH NAs) is developed that utilizes a dual-chain reaction process (internal regulation, internal regulation) to achieve precise activation of NIR-II FL/photoacoustic (PA) imaging-guided synergistic therapy. Inspired by the positive correlation of nitroreductase (NTR) with hypoxia, the CGH NAs encapsulate CQ4T and GOx into NTR-sensitive hyaluronic acid-nitroimidazole (HA-NI) shell via a self-assembly approach, enabling aggregation-caused NIR-II FL quenching and tumor-accurate delivery. When CGH NAs efficiently accumulated in the tumor region, the intensive local NTR reduced hydrophobic -NO2 to hydrophilic -NH2, which lead to disassembly of CGH NAs. The released GOx could consume O2 (internal regulation) and glucose to cut off the energy supply, inducing tumor-starvation therapy; generate gluconic acid and H2O2 (oxidative stress). Meanwhile, the released CQ4T promoted rapid recovery of NIR-II FL signals for imaging-guided PDT, which could simultaneously deplete intratumoral O2 (external stimulation). Remarkably, the strengthened tumor-hypoxia levels in turn accelerated the NTR-responsive degradation of the CGH NAs, thereby achieving high-efficiency theranostic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA