Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oncogene ; 25(29): 4076-85, 2006 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16532035

RESUMO

Astrocyte death has been implicated in several neuropathological diseases, but the identification of molecules susceptible of promoting astrocyte survival has been elusive. We investigated whether transforming growth factor alpha (TGFalpha), an erbB1/EGFR ligand, which promotes glioma progression and affects astrocyte metabolism at embryonic and adult stages, regulates astrocyte survival. Primary serum-free astrocyte cultures from post-natal mouse and fetal human cortices were used. Transforming growth factor alpha protected both species of astrocytes from staurosporine-induced apoptosis. In serum-free medium, mouse astrocytes did not survive beyond 2 months while TGFalpha-treated astrocytes survived up to 12 months. Transforming growth factor alpha also promoted long-term survival of human astrocytes. We additionally extended TGFalpha proliferative effects to human astrocytes. After 3 days of permanent application, TGFalpha induced a major downregulation of both erbB1 and erbB2. This downregulation did not impair the functional activation of the receptors, as ascertained by their tyrosine phosphorylation and the continuous stimulation of both ERK/MAPK and PI3K/Akt pathways up to 7 days, the longest time examined. The full cellular effects of TGFalpha required activation of both transduction pathways. Enhanced proliferation and survival thus define TGFalpha as a gliatrophin for mammalian astrocytes. These results demonstrate that in normal, non-transformed astrocytes, sustained and functional erbBs activation is achieved without bypassing ligand-induced receptors downregulation.


Assuntos
Astrócitos/metabolismo , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Fator de Crescimento Transformador alfa/farmacologia , Envelhecimento/metabolismo , Animais , Astrócitos/citologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebelar/citologia , Córtex Cerebelar/embriologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioma/metabolismo , Humanos , Camundongos , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador alfa/metabolismo
2.
Reproduction ; 133(4): 743-51, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17504918

RESUMO

Phosphoprotein enriched in astrocytes (PEA-15) is a 15 kDa acidic serine-phosphorylated protein expressed in different cell types, especially in the CN. We initially detected the expression of PEA-15 in primary cultures of Sertoli cells. To assess the presence and localization of PEA-15 in the mouse testis, we studied the expression pattern of the PEA-15 protein by immunohistochemistry and mRNA by in situ hybridization. Both the protein and the mRNA of PEA-15 were localized in the cytoplasm of Sertoli cells, all types of spermatogonia, and spermatocytes up till zygotene phase of the meiotic prophase. Subsequently, with ongoing development of the spermatocytes, the expression decreased and was very low in the cytoplasm of diplotene spermatocytes. To analyze the possible role of PEA-15 in the developing testis, null mutants for PEA-15 were examined. As the PEA-15 C terminus contains residues for ERK binding, we studied possible differences between the localization of the ERK2 protein in wild type (WT) and PEA-15(-/-)mice. In the WT testis, ERK2 was localized in the cytoplasm of Sertoli cells, B spermatogonia, preleptotene, leptotene, and zygotene spermatocytes, whereas in the KO testis, ERK2 was primarily localized in the nuclei of these cells and only little staining remained in the cytoplasm. Moreover, in PEA-15-deficient mice, significantly increased numbers of apoptotic spermatocytes were found, indicating an anti-apoptotic role of PEA-15 during the meiotic prophase. The increased numbers of apoptotic spermatocytes were not found at a specific step in the meiotic prophase.


Assuntos
Fosfoproteínas/fisiologia , Espermatócitos/citologia , Testículo/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Western Blotting/métodos , Linhagem Celular , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno , Proteína Quinase 3 Ativada por Mitógeno , Fosfoproteínas/análise , Fosfoproteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células de Sertoli/química , Células de Sertoli/metabolismo , Espermatócitos/química , Testículo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA