Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Thromb Haemost ; 11(4): 715-23, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23387557

RESUMO

BACKGROUND: Normal protein C (PC) plasma levels range widely in the general population. Factors influencing normal PC levels are thought to influence the risk of venous thrombosis. Little is known about the underlying genetic variants. OBJECTIVES: We performed a genome scan of normal PC levels to identify genes that regulate normal PC levels. PATIENTS/METHODS: We performed a variance components linkage analysis for normal PC levels in 275 individuals from a single, large family. We then sequenced candidate genes under the identified linkage peak in eight family members: four with high and four with low, but normal, PC levels. For variants showing a difference in carriers between those with high and low PC levels, we re-evaluated linkage in the 275 family members conditional on the measured genotype effect. Genotype-specific mean PC levels were determined using likelihood analysis. Findings were replicated in the Leiden Thrombophilia Study (LETS). RESULTS: We identified a quantitative trait locus at chromosome 5q14.1 affecting normal PC plasma level variability. Next-generation sequencing of 113 candidate genes under the linkage peak revealed four SNPs in BHMT2, ACOT12, SSBP2 and XRCC4, which significantly increased PC levels in our thrombophilic family, but not in LETS. CONCLUSIONS: We identified four genes at chromosome 5q14.1 that might influence normal PC levels. BHMT2 seems the most likely candidate to regulate PC levels via homocysteine, a competitive inhibitor to thrombin. Failure to replicate our findings in LETS might be due to differences between the studies in genetic background and linkage disequilibrium patterns.


Assuntos
Polimorfismo de Nucleotídeo Único , Proteína C/metabolismo , Estudos de Casos e Controles , Ligação Genética , Humanos , Proteína C/genética
2.
Mol Syndromol ; 3(6): 274-83, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23599698

RESUMO

In a 24-year-old man with mild intellectual disability, congenital heart defects and obesity, we identified up to 4 small supernumerary marker chromosomes (sSMCs) in blood metaphases. The ring-shaped sSMCs were derived from chromosomes 11, 12 and X as well as a fourth, unidentified chromosome. In interphase nuclei of epithelial cells from the urinary tract and buccal mucosa, the presence of the r(11), r(12) and r(X) was confirmed by FISH. Using Illumina Infinium 317K SNP-arrays, we detected 3 copies of the pericentromeric regions of chromosomes 11, 12 and X. The r(X) was present in 84-89% of cells in the various tissues examined, lacks the XIST gene, but contains FAM123B, a potential dosage-sensitive candidate gene for congenital cardiac abnormalities, and ARHGEF9, a candidate gene for intellectual disability. ARHGEF9 encodes collybistin (CB), which is required for localization of the inhibitory receptor-anchoring protein gephyrin and for formation and maintenance of postsynaptic GABAA and glycine receptors. We propose that the 2-fold increase in dosage of ARHGEF9 disturbs the stoichiometry of CB with its interacting proteins at inhibitory postsynapses. SNP alleles and short tandem repeat markers on the r(11) and r(X) were compatible with a maternal origin of both sSMCs through a meiosis II error. The sSMCs may have resulted from predivision chromatid nondisjunction, leading to anaphase lagging, followed by incomplete degradation of the supernumerary chromosomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA