Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105448, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951305

RESUMO

Bacteria utilize quorum sensing (QS) to coordinate many group behaviors. As such, QS has attracted significant attention as a potential mean to attenuate bacterial infectivity without introducing selective pressure for resistance development. Streptococcus mitis, a human commensal, acts as a genetic diversity reservoir for Streptococcus pneumoniae, a prevalent human pathogen. S. mitis possesses a typical comABCDE competence regulon QS circuitry; however, the competence-stimulating peptide (CSP) responsible for QS activation and the regulatory role of the competence regulon QS circuitry in S. mitis are yet to be explored. We set out to delineate the competence regulon QS circuitry in S. mitis, including confirming the identity of the native CSP signal, evaluating the molecular mechanism that governs CSP interactions with histidine kinase receptor ComD leading to ComD activation, and defining the regulatory roles of the competence regulon QS circuitry in initiating various S. mitis phenotypes. Our analysis revealed important structure-activity relationship insights of the CSP signal and facilitated the development of novel CSP-based QS modulators. Our analysis also revealed the involvement of the competence regulon in modulating competence development and biofilm formation. Furthermore, our analysis revealed that the native S. mitis CSP signal can modulate QS response in S. pneumoniae. Capitalizing on this crosstalk, we developed a multispecies QS modulator that activates both the pneumococcus ComD receptors and the S. mitis ComD-2 receptor with high potencies. The novel scaffolds identified herein can be utilized to evaluate the effects temporal QS modulation has on S. mitis as it inhabits its natural niche.


Assuntos
Percepção de Quorum , Streptococcus mitis , Humanos , Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Peptídeos/metabolismo , Fenótipo , Regulon , Streptococcus mitis/genética , Streptococcus mitis/metabolismo , Streptococcus pneumoniae/genética , Relação Estrutura-Atividade , Especificidade da Espécie
2.
Microbiology (Reading) ; 168(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36282148

RESUMO

Streptococcus sinensis is a recently identified member of the Mitis group of streptococci. This species has been associated with infective endocarditis; however its mechanisms of pathogenesis and virulence are not fully understood. This study aimed to investigate the influence of the competence-stimulating peptide (CSP) and the competence regulon quorum-sensing circuitry (ComABCDE) on subsequent gene transcription and expression, as well as resultant phenotypes. In this study we confirmed the native CSP identity, ascertained when endogenous CSP was produced and completed a transcriptome-wide analysis of all genes following CSP exposure. RNA sequencing analysis revealed the upregulation of genes known to be associated with competence, biofilm formation and virulence. As such, a variety of phenotypic assays were utilized to assess the correlation between increased mRNA expression and potential phenotype response, ultimately gaining insight into the effects of CSP on both gene expression and developed phenotypes. The results indicated that the addition of exogenous CSP aided in competence development and successful transformation, yielding an average transformation efficiency comparable to that of other Mitis group streptococci. Additional studies are needed to further delineate the effects of CSP exposure on biofilm formation and virulence. Overall, this study provides novel information regarding S. sinensis and provides a substantial foundation on which this species and its role in disease pathogenesis can be further investigated.


Assuntos
Proteínas de Bactérias , Regulon , Proteínas de Bactérias/metabolismo , Percepção de Quorum/genética , Perfilação da Expressão Gênica , Fenótipo , RNA Mensageiro , Regulação Bacteriana da Expressão Gênica
3.
Cell Chem Biol ; 31(2): 298-311.e6, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832551

RESUMO

Natural competence is the principal driver of streptococcal evolution. While acquisition of new traits could facilitate rapid fitness improvement for bacteria, entry into the competent state is a highly orchestrated event, involving an interplay between various pathways. We present a new type of competence-predation coordination mechanism in Streptococcus sanguinis. Unlike other streptococci that mediate competence through the ComABCDE regulon, several key components are missing in the S. sanguinis ComCDE circuitry. We assembled two synthetic biology devices linking competence-stimulating peptide (CSP) cleavage and export with a quantifiable readout to unravel the unique features of the S. sanguinis circuitry. Our results revealed the ComC precursor cleavage pattern and the two host ABC transporters implicated in the export of the S. sanguinis CSP. Moreover, we discovered a ComCDE-dependent bacteriocin locus. Overall, this study presents a mechanism for commensal streptococci to maximize transformation outcome in a fluid environment through extensive circuitry rewiring.


Assuntos
Bacteriocinas , Streptococcus sanguis , Streptococcus sanguis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sinais (Psicologia) , Bacteriocinas/metabolismo , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA