Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Phys Chem A ; 127(5): 1360-1376, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36722848

RESUMO

X-ray absorption spectroscopy (XAS) has gained popularity in recent years as it probes matter with high spatial and elemental sensitivities. However, the theoretical modeling of XAS is a challenging task since XAS spectra feature a fine structure due to scalar (SC) and spin-orbit (SO) relativistic effects, in particular near L and M absorption edges. While full four-component (4c) calculations of XAS are nowadays feasible, there is still interest in developing approximate relativistic methods that enable XAS calculations at the two-component (2c) level while maintaining the accuracy of the parent 4c approach. In this article we present theoretical and numerical insights into two simple yet accurate 2c approaches based on an (extended) atomic mean-field exact two-component Hamiltonian framework, (e)amfX2C, for the calculation of XAS using linear eigenvalue and damped response time-dependent density functional theory (TDDFT). In contrast to the commonly used one-electron X2C (1eX2C) Hamiltonian, both amfX2C and eamfX2C account for the SC and SO two-electron and exchange-correlation picture-change (PC) effects that arise from the X2C transformation. As we demonstrate on L- and M-edge XAS spectra of transition metal and actinide compounds, the absence of PC corrections in the 1eX2C approximation results in a substantial overestimation of SO splittings, whereas (e)amfX2C Hamiltonians reproduce all essential spectral features such as shape, position, and SO splitting of the 4c references in excellent agreement, while offering significant computational savings. Therefore, the (e)amfX2C PC correction models presented here constitute reliable relativistic 2c quantum-chemical approaches for modeling XAS.

2.
Inorg Chem ; 61(2): 830-846, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34958215

RESUMO

The simulation of X-ray absorption spectra requires both scalar and spin-orbit (SO) relativistic effects to be taken into account, particularly near L- and M-edges where the SO splitting of core p and d orbitals dominates. Four-component Dirac-Coulomb Hamiltonian-based linear damped response time-dependent density functional theory (4c-DR-TDDFT) calculates spectra directly for a selected frequency region while including the relativistic effects variationally, making the method well suited for X-ray applications. In this work, we show that accurate X-ray absorption spectra near L2,3- and M4,5-edges of closed-shell transition metal and actinide compounds with different central atoms, ligands, and oxidation states can be obtained by means of 4c-DR-TDDFT. While the main absorption lines do not change noticeably with the basis set and geometry, the exchange-correlation functional has a strong influence with hybrid functionals performing the best. The energy shift compared to the experiment is shown to depend linearly on the amount of Hartee-Fock exchange with the optimal value being 60% for spectral regions above 1000 eV, providing relative errors below 0.2% and 2% for edge energies and SO splittings, respectively. Finally, the methodology calibrated in this work is used to reproduce the experimental L2,3-edge X-ray absorption spectra of [RuCl2(DMSO)2(Im)2] and [WCl4(PMePh2)2], and resolve the broad bands into separated lines, allowing an interpretation based on ligand field theory and double point groups. These results support 4c-DR-TDDFT as a reliable method for calculating and analyzing X-ray absorption spectra of chemically interesting systems, advance the accuracy of state-of-the art relativistic DFT approaches, and provide a reference for benchmarking more approximate techniques.

3.
J Chem Phys ; 157(11): 114106, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36137811

RESUMO

Based on self-consistent field (SCF) atomic mean-field (amf) quantities, we present two simple yet computationally efficient and numerically accurate matrix-algebraic approaches to correct both scalar-relativistic and spin-orbit two-electron picture-change effects (PCEs) arising within an exact two-component (X2C) Hamiltonian framework. Both approaches, dubbed amfX2C and e(xtended)amfX2C, allow us to uniquely tailor PCE corrections to mean-field models, viz. Hartree-Fock or Kohn-Sham DFT, in the latter case also avoiding the need for a point-wise calculation of exchange-correlation PCE corrections. We assess the numerical performance of these PCE correction models on spinor energies of group 18 (closed-shell) and group 16 (open-shell) diatomic molecules, achieving a consistent ≈10-5 Hartree accuracy compared to reference four-component data. Additional tests include SCF calculations of molecular properties such as absolute contact density and contact density shifts in copernicium fluoride compounds (CnFn, n = 2,4,6), as well as equation-of-motion coupled-cluster calculations of x-ray core-ionization energies of 5d- and 6d-containing molecules, where we observe an excellent agreement with reference data. To conclude, we are confident that our (e)amfX2C PCE correction models constitute a fundamental milestone toward a universal and reliable relativistic two-component quantum-chemical approach, maintaining the accuracy of the parent four-component one at a fraction of its computational cost.

4.
J Chem Phys ; 157(16): 164114, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36319402

RESUMO

Four-component relativistic treatments of the electron paramagnetic resonance g-tensor have so far been based on a common gauge origin and a restricted kinetically balanced basis. The results of such calculations are prone to exhibit a dependence on the choice of the gauge origin for the vector potential associated with uniform magnetic field and a related dependence on the basis set quality. In this work, this gauge problem is addressed by a distributed-origin scheme based on the London atomic orbitals, also called gauge-including atomic orbitals (GIAOs), which have proven to be a practical approach for calculations of other magnetic properties. Furthermore, in the four-component relativistic domain, it has previously been shown that a restricted magnetically balanced (RMB) basis for the small component of the four-component wavefunctions is necessary for achieving robust convergence with regard to the basis set size. We present the implementation of a four-component density functional theory (DFT) method for calculating the g-tensor, incorporating both the GIAOs and RMB basis and based on the Dirac-Coulomb Hamiltonian. The approach utilizes the state-of-the-art noncollinear Kramers-unrestricted DFT methodology to achieve rotationally invariant results and inclusion of spin-polarization effects in the calculation. We also show that the gauge dependence of the results obtained is connected to the nonvanishing integral of the current density in a finite basis, explain why the results of cluster calculations exhibit surprisingly low gauge dependence, and demonstrate that the gauge problem disappears for systems with certain point-group symmetries.

5.
Inorg Chem ; 60(23): 17911-17925, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34738800

RESUMO

Platinum-based anticancer drugs are actively developed utilizing lipophilic ligands or drug carriers for the efficient penetration of biomembranes, reduction of side effects, and tumor targeting. We report the development of a supramolecular host-guest system built on cationic platinum(II) compounds bearing ligands anchored in the cavity of the macrocyclic host. The host-guest binding and hydrolysis process on the platinum core were investigated in detail by using NMR, MS, X-ray diffraction, and relativistic DFT calculations. The encapsulation process in cucurbit[7]uril unequivocally promotes the stability of hydrolyzed dicationic cis-[PtII(NH3)2(H2O)(NH2-R)]2+ compared to its trans isomer. Biological screening on the ovarian cancer lines A2780 and A2780/CP shows time-dependent toxicity. Notably, the reported complex and its ß-cyclodextrin (ß-CD) assembly achieve the same cellular uptake as cisplatin and cisplatin@ß-CD, respectively, while maintaining a significantly lower toxicity profile.


Assuntos
Antineoplásicos/farmacologia , Teoria da Densidade Funcional , Compostos Macrocíclicos/farmacologia , Compostos Organoplatínicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Células Tumorais Cultivadas
6.
Inorg Chem ; 59(23): 17509-17518, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33226791

RESUMO

1H NMR spectroscopy has become an important technique for the characterization of transition-metal hydride complexes, whose metal-bound hydrides are often difficult to locate by X-ray diffraction. In this regard, the accurate prediction of 1H NMR chemical shifts provides a useful, but challenging, strategy to help in the interpretation of the experimental spectra. In this work, we establish a density-functional-theory protocol that includes relativistic, solvent, and dynamic effects at a high level of theory, allowing us to report an accurate and reliable interpretation of 1H NMR hydride chemical shifts of iridium polyhydride complexes. In particular, we have studied in detail the hydride chemical shifts of the [Ir6(IMe)8(CO)2H14]2+ complex in order to validate previous assignments. The computed 1H NMR chemical shifts are strongly dependent on the relativistic treatment, the choice of the DFT exchange-correlation functional, and the conformational dynamics. By combining a fully relativistic four-component electronic-structure treatment with ab initio molecular dynamics, we were able to reliably model both the terminal and bridging hydride chemical shifts and to show that two NMR hydride signals were inversely assigned in the experiment.

7.
Phys Chem Chem Phys ; 22(13): 7065-7076, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32196050

RESUMO

This work reports new, accurate nuclear magnetic dipole moments for NMR-active transition metal nuclei where the long-standing systematic error due to obsolete diamagnetic correction has been eliminated by ab initio calculations of absolute NMR shielding constants. The error of the diamagnetic correction reaches ≈ -14 000 ppm for rhenium, which results in magnetic dipole moment corrections of about -3 × 10-2µN for the 185Re and 187Re nuclei. Such extreme values are one to two orders of magnitude larger than the corrections reported in the literature so far. These findings may help to resolve discrepancies in hyperfine splitting experiments involving rhenium ions. To obtain the corrected transition metal nuclear magnetic dipole moments, NMR shielding constants for a series of transition metal complexes defined as NMR standards [Harris et al., Pure Appl. Chem., 2001, 73, 1795] were calculated using the non-relativistic coupled cluster method and four-component relativistic density functional theory. To reproduce the experimental conditions of the NMR standards, the solvent effects were incorporated by explicit and implicit solvent models.

8.
J Phys Chem A ; 124(25): 5157-5169, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32460489

RESUMO

An unambiguous assignment of coupling pathways plays an important role in the description and rationalization of NMR indirect spin-spin coupling constants (SSCCs). Unfortunately, the SSCC analysis and visualization tools currently available to quantum chemists are restricted to nonrelativistic theory. Here, we present the theoretical foundation for novel relativistic SSCC visualization techniques based on analysis of the SSCC densities and the first-order current densities induced by the nuclear magnetic dipole moments. Details of the implementation of these techniques in the ReSpect program package are discussed. Numerical assessments are performed on through-space SSCCs, and we choose as our examples the heavy-atom Se-Se, Se-Te, and Te-Te coupling constants in three similar molecules for which experimental data are available. SSCCs were calculated at the nonrelativistic, scalar relativistic, and four-component relativistic density functional levels of theory. Furthermore, with the aid of different visualization methods, we discuss the interpretation of the relativistic effects, which are sizable for Se-Se, very significant for Se-Te, and cannot be neglected for Te-Te couplings. A substantial improvement of the theoretical SSCC values is obtained by also considering the molecular properties of a second conformation.

9.
J Chem Phys ; 152(18): 184101, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32414255

RESUMO

With the increasing interest in compounds containing heavier elements, the experimental and theoretical community requires computationally efficient approaches capable of simultaneous non-perturbative treatment of relativistic, spin-polarization, and electron correlation effects. The ReSpect program has been designed with this goal in mind and developed to perform relativistic density functional theory (DFT) calculations on molecules and solids at the quasirelativistic two-component (X2C Hamiltonian) and fully relativistic four-component (Dirac-Coulomb Hamiltonian) level of theory, including the effects of spin polarization in open-shell systems at the Kramers-unrestricted self-consistent field level. Through efficient algorithms exploiting time-reversal symmetry, biquaternion algebra, and the locality of atom-centered Gaussian-type orbitals, a significant reduction of the methodological complexity and computational cost has been achieved. This article summarizes the essential theoretical and technical advances made in the program, supplemented by example calculations. ReSpect allows molecules with >100 atoms to be efficiently handled at the four-component level of theory on standard central processing unit-based commodity clusters, at computational costs that rarely exceed a factor of 10 when compared to the non-relativistic realm. In addition to the prediction of band structures in solids, ReSpect offers a growing list of molecular spectroscopic parameters that range from electron paramagnetic resonance parameters (g-tensor, A-tensor, and zero-field splitting), via (p)NMR chemical shifts and nuclear spin-spin couplings, to various linear response properties using either conventional or damped-response time-dependent DFT (TDDFT): excitation energies, frequency-dependent polarizabilities, and natural chiroptical properties (electronic circular dichroism and optical rotatory dispersion). In addition, relativistic real-time TDDFT electron dynamics is another unique feature of the program. Documentation, including user manuals and tutorials, is available at the program's website http://www.respectprogram.org.

10.
J Chem Phys ; 151(18): 184111, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31731859

RESUMO

We present a formulation of relativistic linear response time-dependent density functional theory for the calculation of electronic excitation energies in the framework of the four-component Dirac-Coulomb Hamiltonian. This approach is based on the noncollinear ansatz originally developed by Scalmani and Frisch [J. Chem. Theory Comput. 8, 2193 (2012)] and improves upon the past treatment of the limit cases in which the spin density approaches zero. As a result of these improvements, the presented approach is capable of treating both closed- and open-shell reference states. Robust convergence of the Davidson-Olsen eigenproblem algorithm for open-shell reference states was achieved through the use of a solver which considers both left and right eigenvectors. The applicability of the present methodology on both closed- and open-shell reference states is demonstrated on calculations of low-lying excitation energies for Group 3 atomic systems (Sc3+-Ac3+) with nondegenerate ground states, as well as for Group 11 atomic systems (Cu-Rg) and octahedral actinide complexes (PaCl6 2-, UCl6 -, and NpF6) with effective doublet ground states.

11.
J Chem Phys ; 151(19): 194112, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31757145

RESUMO

We present a detailed theory, implementation, and a benchmark study of a linear damped response time-dependent density functional theory (TDDFT) based on the relativistic four-component (4c) Dirac-Kohn-Sham formalism using the restricted kinetic balance condition for the small-component basis and a noncollinear exchange-correlation kernel. The damped response equations are solved by means of a multifrequency iterative subspace solver utilizing decomposition of the equations according to Hermitian and time-reversal symmetry. This partitioning leads to robust convergence, and the detailed algorithm of the solver for relativistic multicomponent wavefunctions is also presented. The solutions are then used to calculate the linear electric- and magnetic-dipole responses of molecular systems to an electric perturbation, leading to frequency-dependent dipole polarizabilities, electronic absorption, circular dichroism (ECD), and optical rotatory dispersion (ORD) spectra. The methodology has been implemented in the relativistic spectroscopy DFT program ReSpect, and its performance was assessed on a model series of dimethylchalcogeniranes, C4H8X (X = O, S, Se, Te, Po, Lv), and on larger transition metal complexes that had been studied experimentally, [M(phen)3]3+ (M = Fe, Ru, Os). These are the first 4c damped linear response TDDFT calculations of ECD and ORD presented in the literature.

12.
Chemistry ; 24(20): 5124-5133, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29027277

RESUMO

The performance of relativistic density functional theory (DFT) methods has been investigated for the calculation of the recently measured hyperfine coupling constants of hexafluorido complexes [ReF6 ]2- and [IrF6 ]2- . Three relativistic methods were employed at the DFT level of theory: the 2-component zeroth-order regular approximation (ZORA) method, in which the spin-orbit coupling was treated either variationally (EV ZORA) or as a perturbation (LR ZORA), and the 4-component Dirac-Kohn-Sham (DKS) method. The dependence of the results on the basis set and the choice of exchange-correlation functional was studied. Furthermore, the effect of varying the amount of Hartree-Fock exchange in the hybrid functionals was investigated. The LR ZORA and DKS methods combined with DFT led to very similar deviations (about 20 %) from the experimental values for the coupling constant of complex [ReF6 ]2- by using hybrid functionals. However, none of the methods were able to reproduce the large anisotropy of the hyperfine coupling tensor of complex [ReF6 ]2- . For [IrF6 ]2- , the EV ZORA and DKS methods reproduced the experimental tensor components with deviations of ≈10 and ≈5 % for the hybrid functionals, whereas the LR ZORA method predicted the coupling constant to be around one order of magnitude too large owing to the combination of large spin-orbit coupling and very low excitation energies.

13.
Inorg Chem ; 57(15): 8748-8759, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30004686

RESUMO

The links between the molecular structure and nuclear magnetic resonance (NMR) parameters of paramagnetic transition-metal complexes are still relatively unexplored. This applies particularly to the contact term of the hyperfine contribution to the NMR chemical shift. We report combining experimental NMR with relativistic density functional theory (DFT) to study a series of Ru(III) complexes with 2-substituted ß-diketones. A series of complexes with systematically varied substituents was synthesized and analyzed using 1H and 13C NMR spectroscopy. The NMR spectra recorded at several temperatures were used to construct Curie plots and estimate the temperature-independent (orbital) and temperature-dependent (hyperfine) contributions to the NMR shift. Relativistic DFT calculations of electron paramagnetic resonance and NMR parameters were performed to interpret the experimental observations. The effects of individual factors such as basis set, density functional, exact-exchange admixture, and relativity are analyzed and discussed. Based on the calibration study in this work, the fully relativistic Dirac-Kohn-Sham (DKS) method, the GIAO approach (orbital shift), the PBE0 functional with the triple-ζ valence basis sets, and the polarizable continuum model for describing solvent effects were selected to calculate the NMR parameters. The hyperfine contribution to the total paramagnetic NMR (pNMR) chemical shift is shown to be governed by the Fermi-contact (FC) term, and the substituent effect (H vs Br) on the through-bond FC shifts is analyzed, interpreted, and discussed in terms of spin-density distribution, atomic spin populations, and molecular-orbital theory. In contrast to the closed-shell systems of Rh(III), the presence of a single unpaired electron in the open-shell Ru(III) analogs significantly alters the NMR resonances of the ligand atoms distant from the metal center in synergy with the substituent effect.

14.
J Chem Phys ; 149(20): 204104, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30501232

RESUMO

We present an implementation and application of electron dynamics based on real-time time-dependent density functional theory (RT-TDDFT) and relativistic 2-component X2C and 4-component Dirac-Coulomb (4c) Hamiltonians to the calculation of electron circular dichroism and optical rotatory dispersion spectra. In addition, the resolution-of-identity approximation for the Coulomb term (RI-J) is introduced into RT-TDDFT and formulated entirely in terms of complex quaternion algebra. The proposed methodology was assessed on the dimethylchalcogenirane series, C4H8X (X = O, S, Se, Te, Po, Lv), and the spectra obtained by non-relativistic and relativistic methods start to disagree for Se and Te, while dramatic differences are observed for Po and Lv. The X2C approach, even in its simplest one-particle form, reproduces the reference 4c results surprisingly well across the entire series while offering an 8-fold speed-up of the simulations. An overall acceleration of RT-TDDFT by means of X2C and RI-J increases with system size and approaches a factor of almost 25 when compared to the full 4c treatment, without compromising the accuracy of the final spectra. These results suggest that one-particle X2C electron dynamics with RI-J acceleration is an attractive method for the calculation of chiroptical spectra in the valence region.

15.
J Chem Phys ; 145(1): 014107, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27394099

RESUMO

We present a formulation of Laplace-transformed atomic orbital-based second-order Møller-Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.

16.
J Chem Phys ; 145(24): 244308, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28049325

RESUMO

We report the Nuclear Magnetic Resonance (NMR) spin-spin coupling constants for diatomic alkali halides MX, where M = Li, Na, K, Rb, or Cs and X = F, Cl, Br, or I. The coupling constants are determined by supplementing the non-relativistic coupled-cluster singles-and-doubles (CCSD) values with relativistic corrections evaluated at the four-component density-functional theory (DFT) level. These corrections are calculated as the differences between relativistic and non-relativistic values determined using the PBE0 functional with 50% exact-exchange admixture. The total coupling constants obtained in this approach are in much better agreement with experiment than the standard relativistic DFT values with 25% exact-exchange, and are also noticeably better than the relativistic PBE0 results obtained with 50% exact-exchange. Further improvement is achieved by adding rovibrational corrections, estimated using literature data.

17.
Chemistry ; 21(51): 18834-40, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26541625

RESUMO

We have calculated the (13)C NMR chemical shifts of a large ensemble of halogenated organic molecules (81 molecules for a total of 250 experimental (13)C NMR data at four different levels of theory), ranging from small rigid organic compounds, used to benchmark the performance of various levels of theory, to natural substances of marine origin with conformational degrees of freedom. Carbon atoms bonded to heavy halogen atoms, particularly bromine and iodine, are known to be rather challenging when it comes to the prediction of their chemical shifts by quantum methods, due to relativistic effects. In this paper, we have applied the state-of-the-art four-component relativistic density functional theory for the prediction of such NMR properties and compared the performance with two-component and nonrelativistic methods. Our results highlight the necessity to include relativistic corrections within a four-component description for the most accurate prediction of the NMR properties of halogenated organic substances.

18.
Inorg Chem ; 54(23): 11411-22, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26582548

RESUMO

The PSiP pincer-supported complex ((Cy)PSiP)PdH [(Cy)PSiP = Si(Me)(2-PCy2-C6H4)2] has been implicated as a crucial intermediate in carboxylation of both allenes and boranes. At this stage, however, there is uncertainty regarding the exact structure of ((Cy)PSiP)PdH, especially in solution. Previously, both a Pd(II) structure with a terminal Pd hydride and a Pd(0) structure featuring an η(2)-silane have been proposed. In this contribution, a range of techniques were used to establish that ((Cy)PSiP)PdH and the related Pt species, ((Cy)PSiP)PtH, are true M(II) hydrides in both the solid state and solution. The single-crystal X-ray structures of ((Cy)PSiP)MH (M = Pd and Pt) and the related species ((iPr)PSiP)PdH [(iPr)PSiP = Si(Me)(2-P(i)Pr2-C6H4)2] are in agreement with the presence of a terminal metal hydride, and the exact geometry of ((Cy)PSiP)PtH was confirmed using neutron diffraction. The (1)H and (29)Si{(1)H}NMR chemical shifts of ((Cy)PSiP)MH (M = Pd and Pt) are consistent with a structure containing a terminal hydride, especially when compared to the chemical shifts of related pincer-supported complexes. In fact, in this work, two general trends relating to the (1)H NMR chemical shifts of group 10 pincer-supported terminal hydrides were elucidated: (i) the hydride shift moves downfield from Ni to Pd to Pt and (ii) the hydride shift moves downfield with more trans-influencing pincer central donors. DFT calculations indicate that structures containing a M(II) hydride are lower in energy than the corresponding η(2)-silane isomers. Furthermore, the calculated NMR chemical shifts of the M(II) hydrides using a relativistic four-component methodology incorporating all significant scalar and spin-orbit corrections are consistent with those observed experimentally. Finally, in situ X-ray absorption spectroscopy (XAS) was used to provide further support that ((Cy)PSiP)MH exist as M(II) hydrides in solution.

19.
Phys Chem Chem Phys ; 17(35): 22566-70, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26268195

RESUMO

The solution of the Liouville-von Neumann equation in the relativistic Dirac-Kohn-Sham density matrix formalism is presented and used to calculate X-ray absorption cross sections. Both dynamical relaxation effects and spin-orbit corrections are included, as demonstrated by calculations of the X-ray absorption of SF6 near the sulfur L2,3-edges. We also propose an analysis facilitating the interpretation of spectral transitions from real-time simulations, and a selective perturbation that eliminates nonphysical excitations that are artifacts of the finite basis representation.

20.
Phys Chem Chem Phys ; 17(38): 24944-55, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26344822

RESUMO

The role of various factors (structure, solvent, and relativistic treatment) was evaluated for square-planar 4d and 5d transition-metal complexes. The DFT method for calculating the structures was calibrated using a cluster approach and compared to X-ray geometries, with the PBE0 functional (def2-TZVPP basis set) providing the best results, followed closely by the hybrid TPSSH and the MN12SX functionals. Calculations of the NMR chemical shifts using the two-component (2c, Zeroth-Order Regular Approximation as implemented in the ADF package) and four-component (4c, Dirac-Coulomb as implemented in the ReSpect code) relativistic approaches were performed to analyze and demonstrate the importance of solvent corrections (2c) as well as a proper treatment of relativistic effects (4c). The importance of increased exact-exchange admixture in the functional (here PBE0) for reproducing the experimental data using the current implementation of the 2c approach is partly rationalized as a compensation for the missing exchange-correlation response kernel. The kernel contribution was identified to be about 15-20% of the spin-orbit-induced NMR chemical shift, ΔδSO, which roughly corresponds to an increase in ΔδSO introduced by the artificially increased exact-exchange admixture in the functional. Finally, the role of individual effects (geometry, solvent, relativity) in the NMR chemical shift is discussed in selected complexes. Although a fully relativistic DFT approach is still awaiting the implementation of GIAOs for hybrid functionals and an implicit solvent model, it nevertheless provides reliable NMR chemical shift data at an affordable computational cost. It is expected to outperform the 2c approach, in particular for the calculation of NMR parameters in heavy-element compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA