Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(9): e57181, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37522754

RESUMO

Hepatocytes form bile canaliculi that dynamically respond to the signalling activity of bile acids and bile flow. Little is known about their responses to intraluminal pressure. During embryonic development, hepatocytes assemble apical bulkheads that increase the canalicular resistance to intraluminal pressure. Here, we investigate whether they also protect bile canaliculi against elevated pressure upon impaired bile flow in adult liver. Apical bulkheads accumulate upon bile flow obstruction in mouse models and patients with primary sclerosing cholangitis (PSC). Their loss under these conditions leads to abnormally dilated canaliculi, resembling liver cell rosettes described in other hepatic diseases. 3D reconstruction reveals that these structures are sections of cysts and tubes formed by hepatocytes. Mathematical modelling establishes that they positively correlate with canalicular pressure and occur in early PSC stages. Using primary hepatocytes and 3D organoids, we demonstrate that excessive canalicular pressure causes the loss of apical bulkheads and formation of rosettes. Our results suggest that apical bulkheads are a protective mechanism of hepatocytes against impaired bile flow, highlighting the role of canalicular pressure in liver diseases.


Assuntos
Bile , Hepatopatias , Camundongos , Animais , Fígado , Canalículos Biliares , Hepatócitos
2.
Planta ; 258(4): 71, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632541

RESUMO

MAIN CONCLUSION: WHIRLY1 deficient barley plants surviving growth at high irradiance displayed increased non-radiative energy dissipation, enhanced contents of zeaxanthin and the flavonoid lutonarin, but no changes in α-tocopherol nor glutathione. Plants are able to acclimate to environmental conditions to optimize their functions. With the exception of obligate shade plants, they can adjust their photosynthetic apparatus and the morphology and anatomy of their leaves to irradiance. Barley (Hordeum vulgare L., cv. Golden Promise) plants with reduced abundance of the protein WHIRLY1 were recently shown to be unable to acclimatise important components of the photosynthetic apparatus to high light. Nevertheless, these plants did not show symptoms of photoinhibition. High-light (HL) grown WHIRLY1 knockdown plants showed clear signs of exposure to excessive irradiance such as a low epoxidation state of the violaxanthin cycle pigments and an early light saturation of electron transport. These responses were underlined by a very large xanthophyll cycle pool size and by an increased number of plastoglobules. Whereas zeaxanthin increased with HL stress, α-tocopherol, which is another lipophilic antioxidant, showed no response to excessive light. Also the content of the hydrophilic antioxidant glutathione showed no increase in W1 plants as compared to the wild type, whereas the flavone lutonarin was induced in W1 plants. HPLC analysis of removed epidermal tissue indicated that the largest part of lutonarin was presumably located in the mesophyll. Since lutonarin is a better antioxidant than saponarin, the major flavone present in barley leaves, it is concluded that lutonarin accumulated as a response to oxidative stress. It is also concluded that zeaxanthin and lutonarin may have served as antioxidants in the WHIRLY1 knockdown plants, contributing to their survival in HL despite their restricted HL acclimation.


Assuntos
Flavonas , Hordeum , Hordeum/genética , Antioxidantes , Zeaxantinas , alfa-Tocoferol , Glutationa , Aclimatação
3.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446343

RESUMO

The linear chromosome of the Methanosarcina spherical virus with 10,567 bp exhibits 22 ORFs with mostly unknown functions. Annotation using common tools and databases predicted functions for a few genes like the type B DNA polymerase (MetSVORF07) or the small (MetSVORF15) and major (MetSVORF16) capsid proteins. For verification of assigned functions of additional ORFs, biochemical or genetic approaches were found to be essential. Consequently, we established a genetic system for MetSV by cloning its genome into the E. coli plasmid pCR-XL-2. Comparisons of candidate plasmids with the MetSV reference based on Nanopore sequencing revealed several mutations of yet unknown provenance with an impact on protein-coding sequences. Linear MetSV inserts were generated by BamHI restriction, purified and transformed in Methanosarcina mazei by an optimized liposome-mediated transformation protocol. Analysis of resulting MetSV virions by TEM imaging and infection experiments demonstrated no significant differences between plasmid-born viruses and native MetSV particles regarding their morphology or lytic behavior. The functionality of the genetic system was tested by the generation of a ΔMetSVORF09 mutant that was still infectious. Our genetic system of MetSV, the first functional system for a virus of methanoarchaea, now allows us to obtain deeper insights into MetSV protein functions and virus-host interactions.


Assuntos
Escherichia coli , Escherichia coli/genética , Plasmídeos/genética , Mutação
4.
Planta ; 255(4): 84, 2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35279792

RESUMO

MAIN CONCLUSION: In accordance with a key role of WHIRLY1 in light-acclimation mechanisms, typical features of acclimation to high light, including photosynthesis and leaf morphology, are compromised in WHIRLY1 deficient plants. Acclimation to the environment requires efficient communication between chloroplasts and the nucleus. Previous studies indicated that the plastid-nucleus located WHIRLY1 protein is required for the communication between plastids and the nucleus in situations of high light exposure. To investigate the consequences of WHIRLY1 deficiency on the light acclimation of photosynthesis and leaf anatomy, transgenic barley plants with an RNAi-mediated knockdown of HvWHIRLY1 were compared to wild-type plants when growing at low and high irradiance. While wild-type plants showed the typical light acclimation responses, i.e. higher photosynthetic capacity and thicker leaves, the WHIRLY1 deficient plants were not able to respond to differences in irradiance. The results revealed a systemic role of WHIRLY1 in light acclimation by coordinating responses at the level of the chloroplast and the level of leaf morphology.


Assuntos
Hordeum , Aclimatação/fisiologia , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/metabolismo , Folhas de Planta/metabolismo , Plastídeos/metabolismo
5.
Arch Microbiol ; 204(9): 546, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35939214

RESUMO

Two bacterial strains, KH365_2T and KH569_7, were isolated from the cecum contents of wild-derived house mice. The strains were characterized as Gram-negative, rod-shaped, strictly anaerobic, and non-motile. Phylogenetic analysis based on 16S rRNA gene sequences revealed that both strains were most closely related to Bacteroides uniformis ATCC 8492T. Whole genome sequences of KH365_2T and KH569_7 strains have a DNA G + C content of 46.02% and 46.03% mol, respectively. Most morphological and biochemical characteristics did not differ between the newly isolated strains and classified Bacteroides strains. However, the average nucleotide identity (ANI) and dDNA-DNA hybridization (dDDH) values clearly distinguished the two strains from described members of the genus Bacteroides. Here, we present the phylogeny, morphology, and physiology of a novel species of the genus Bacteroides and propose the name Bacteroides muris sp. nov., with KH365_2T (DSM 114231T = CCUG 76277T) as type strain.


Assuntos
Bacteroides , Gastrópodes , Animais , Técnicas de Tipagem Bacteriana , Bacteroides/genética , Ceco/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Camundongos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Traffic ; 20(8): 601-617, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31206952

RESUMO

Many cellular organelles, including endosomes, show compartmentalization into distinct functional domains, which, however, cannot be resolved by diffraction-limited light microscopy. Single molecule localization microscopy (SMLM) offers nanoscale resolution but data interpretation is often inconclusive when the ultrastructural context is missing. Correlative light electron microscopy (CLEM) combining SMLM with electron microscopy (EM) enables correlation of functional subdomains of organelles in relation to their underlying ultrastructure at nanometer resolution. However, the specific demands for EM sample preparation and the requirements for fluorescent single-molecule photo-switching are opposed. Here, we developed a novel superCLEM workflow that combines triple-color SMLM (dSTORM & PALM) and electron tomography using semi-thin Tokuyasu thawed cryosections. We applied the superCLEM approach to directly visualize nanoscale compartmentalization of endosomes in HeLa cells. Internalized, fluorescently labeled Transferrin and EGF were resolved into morphologically distinct domains within the same endosome. We found that the small GTPase Rab5 is organized in nanodomains on the globular part of early endosomes. The simultaneous visualization of several proteins in functionally distinct endosomal sub-compartments demonstrates the potential of superCLEM to link the ultrastructure of organelles with their molecular organization at nanoscale resolution.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Endossomos/ultraestrutura , Imagem Individual de Molécula/métodos , Endossomos/metabolismo , Células HeLa , Humanos , Proteínas rab5 de Ligação ao GTP/metabolismo
7.
PLoS Pathog ; 14(3): e1006925, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29522566

RESUMO

Effector molecules translocated by the Salmonella pathogenicity island (SPI)1-encoded type 3 secretion system (T3SS) critically contribute to the pathogenesis of human Salmonella infection. They facilitate internalization by non-phagocytic enterocytes rendering the intestinal epithelium an entry site for infection. Their function in vivo has remained ill-defined due to the lack of a suitable animal model that allows visualization of intraepithelial Salmonella. Here, we took advantage of our novel neonatal mouse model and analyzed various bacterial mutants and reporter strains as well as gene deficient mice. Our results demonstrate the critical but redundant role of SopE2 and SipA for enterocyte invasion, prerequisite for transcriptional stimulation and mucosal translocation in vivo. In contrast, the generation of a replicative intraepithelial endosomal compartment required the cooperative action of SipA and SopE2 or SipA and SopB but was independent of SopA or host MyD88 signaling. Intraepithelial growth had no critical influence on systemic spread. Our results define the role of SPI1-T3SS effector molecules during enterocyte invasion and intraepithelial proliferation in vivo providing novel insight in the early course of Salmonella infection.


Assuntos
Proteínas de Bactérias/metabolismo , Enterócitos/microbiologia , Mucosa Intestinal/microbiologia , Fator 88 de Diferenciação Mieloide/fisiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Sistemas de Secreção Tipo III/metabolismo , Animais , Proteínas de Bactérias/genética , Proliferação de Células , Enterócitos/metabolismo , Enterócitos/patologia , Teste de Complementação Genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Salmonella/metabolismo , Transdução de Sinais , Sistemas de Secreção Tipo III/genética
8.
PLoS Pathog ; 14(8): e1007249, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30133543

RESUMO

The complex life-cycle of the human malaria parasite Plasmodium falciparum requires a high degree of tight coordination allowing the parasite to adapt to changing environments. One of the major challenges for the parasite is the human-to-mosquito transmission, which starts with the differentiation of blood stage parasites into the transmissible gametocytes, followed by the rapid conversion of the gametocytes into gametes, once they are taken up by the blood-feeding Anopheles vector. In order to pre-adapt to this change of host, the gametocytes store transcripts in stress granules that encode proteins needed for parasite development in the mosquito. Here we report on a novel stress granule component, the seven-helix protein 7-Helix-1. The protein, a homolog of the human stress response regulator LanC-like 2, accumulates in stress granules of female gametocytes and interacts with ribonucleoproteins, such as CITH, DOZI, and PABP1. Malaria parasites lacking 7-Helix-1 are significantly impaired in female gametogenesis and thus transmission to the mosquito. Lack of 7-Helix-1 further leads to a deregulation of components required for protein synthesis. Consistently, inhibitors of translation could mimic the 7-Helix-1 loss-of-function phenotype. 7-Helix-1 forms a complex with the RNA-binding protein Puf2, a translational regulator of the female-specific antigen Pfs25, as well as with pfs25-coding mRNA. In accord, gametocytes deficient of 7-Helix-1 exhibit impaired Pfs25 synthesis. Our data demonstrate that 7-Helix-1 constitutes stress granules crucial for regulating the synthesis of proteins needed for life-cycle progression of Plasmodium in the mosquito vector.


Assuntos
Anopheles/parasitologia , Malária Falciparum/transmissão , Proteínas de Membrana/fisiologia , Plasmodium falciparum , Biossíntese de Proteínas , Animais , Grânulos Citoplasmáticos/metabolismo , Feminino , Humanos , Estágios do Ciclo de Vida/genética , Malária Falciparum/parasitologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Organismos Geneticamente Modificados , Proteínas de Ligação a Fosfato , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Biossíntese de Proteínas/genética , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/fisiologia , Homologia de Sequência , Estresse Fisiológico
9.
Cell Microbiol ; 21(1): e12958, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30251327

RESUMO

Professional phagocytic cells such as macrophages are a central part of innate immune defence. They ingest microorganisms into membrane-bound compartments (phagosomes), which acidify and eventually fuse with lysosomes, exposing their contents to a microbicidal environment. Gram-positive Rhodococcus equi can cause pneumonia in young foals and in immunocompromised humans. The possession of a virulence plasmid allows them to subvert host defence mechanisms and to multiply in macrophages. Here, we show that the plasmid-encoded and secreted virulence-associated protein A (VapA) participates in exclusion of the proton-pumping vacuolar-ATPase complex from phagosomes and causes membrane permeabilisation, thus contributing to a pH-neutral phagosome lumen. Using fluorescence and electron microscopy, we show that VapA is also transferred from phagosomes to lysosomes where it permeabilises the limiting membranes for small ions such as protons. This permeabilisation process is different from that of known membrane pore formers as revealed by experiments with artificial lipid bilayers. We demonstrate that, at 24 hr of infection, virulent R. equi is contained in a vacuole, which is enriched in lysosome material, yet possesses a pH of 7.2 whereas phagosomes containing a vapA deletion mutant have a pH of 5.8 and those with virulence plasmid-less sister strains have a pH of 5.2. Experimentally neutralising the macrophage endocytic system allows avirulent R. equi to multiply. This observation is mirrored in the fact that virulent and avirulent R. equi multiply well in extracts of purified lysosomes at pH 7.2 but not at pH 5.1. Together these data indicate that the major function of VapA is to generate a pH-neutral and hence growth-promoting intracellular niche. VapA represents a new type of Gram-positive virulence factor by trafficking from one subcellular compartment to another, affecting membrane permeability, excluding proton-pumping ATPase, and consequently disarming host defences.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Fagossomos/microbiologia , ATPases Translocadoras de Prótons/antagonistas & inibidores , Rhodococcus equi/crescimento & desenvolvimento , Rhodococcus equi/metabolismo , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência , Virulência
10.
J Cell Sci ; 130(18): 3124-3140, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28754686

RESUMO

L-leucyl-L-leucine methyl ester (LLOMe) induces apoptosis, which is thought to be mediated by release of lysosomal cysteine cathepsins from permeabilized lysosomes into the cytosol. Here, we demonstrated in HeLa cells that apoptotic as well as sub-apoptotic concentrations of LLOMe caused rapid and complete lysosomal membrane permeabilization (LMP), as evidenced by loss of the proton gradient and release into the cytosol of internalized lysosomal markers below a relative molecular mass of 10,000. However, there was no evidence for the release of cysteine cathepsins B and L into the cytosol; rather they remained within lysosomes, where they were rapidly inactivated and degraded. LLOMe-induced adverse effects, including LMP, loss of cysteine cathepsin activity, caspase activation and cell death could be reduced by inhibition of cathepsin C, but not by inhibiting cathepsins B and L. When incubated with sub-apoptotic LLOMe concentrations, lysosomes transiently lost protons but annealed and re-acidified within hours. Full lysosomal function required new protein synthesis of cysteine cathepsins and other hydrolyses. Our data argue against the release of lysosomal enzymes into the cytosol and their proposed proteolytic signaling during LLOMe-induced apoptosis.


Assuntos
Catepsinas/metabolismo , Cisteína/metabolismo , Citosol/metabolismo , Dipeptídeos/farmacologia , Lisossomos/metabolismo , Apoptose/efeitos dos fármacos , Citosol/efeitos dos fármacos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Hidrolases/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Lisossomos/ultraestrutura , Modelos Biológicos , Permeabilidade/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Prótons
11.
EMBO Rep ; 18(10): 1727-1739, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28835545

RESUMO

Autophagy (macroautophagy) is a highly conserved eukaryotic degradation pathway in which cytosolic components and organelles are sequestered by specialized autophagic membranes and degraded through the lysosomal system. The autophagic pathway maintains basal cellular homeostasis and helps cells adapt during stress; thus, defects in autophagy can cause detrimental effects. It is therefore crucial that autophagy is properly regulated. In this study, we show that the cysteine protease Atg4B, a key enzyme in autophagy that cleaves LC3, is an interactor of the small GTPase Rab7b. Indeed, Atg4B interacts and co-localizes with Rab7b on vesicles. Depletion of Rab7b increases autophagic flux as indicated by the increased size of autophagic structures as well as the magnitude of macroautophagic sequestration and degradation. Importantly, we demonstrate that Rab7b regulates LC3 processing by modulating Atg4B activity. Taken together, our findings reveal Rab7b as a novel negative regulator of autophagy through its interaction with Atg4B.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Cisteína Endopeptidases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Relacionadas à Autofagia/genética , Cisteína Endopeptidases/genética , Regulação da Expressão Gênica , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas rab de Ligação ao GTP/deficiência , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
12.
BMC Biol ; 16(1): 1, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29325545

RESUMO

BACKGROUND: Phthiocerol dimycocerosates (PDIM), glycolipids found on the outer surface of virulent members of the Mycobacterium tuberculosis (Mtb) complex, are a major contributing factor to the pathogenesis of Mtb. Myelocytic cells, such as macrophages and dendritic cells, are the primary hosts for Mtb after infection and previous studies have shown multiple roles for PDIM in supporting Mtb in these cells. However, Mtb can infect other cell types. We previously showed that Mtb efficiently replicates in human lymphatic endothelial cells (hLECs) and that the hLEC cytosol acts as a reservoir for Mtb in humans. Here, we examined the role of PDIM in Mtb translocation to the cytosol in hLECs. RESULTS: Analysis of a Mtb mutant unable to produce PDIM showed less co-localisation of bacteria with the membrane damage marker Galectin-8 (Gal8), indicating that PDIM strongly contribute to phagosomal membrane damage. Lack of this Mtb lipid also leads to a reduction in the proportion of Mtb co-localising with markers of macroautophagic removal of intracellular bacteria (xenophagy) such as ubiquitin, p62 and NDP52. hLEC imaging with transmission electron microscopy shows that Mtb mutants lacking PDIM are much less frequently localised in the cytosol, leading to a lower intracellular burden. CONCLUSIONS: PDIM is needed for the disruption of the phagosome membrane in hLEC, helping Mtb avoid the hydrolytic phagolysosomal milieu. It facilitates the translocation of Mtb into the cytosol, and the decreased intracellular burden of Mtb lacking PDIM indicates that the cytosol is the preferred replicative niche for Mtb in these cells. We hypothesise that pharmacological targeting of PDIM synthesis in Mtb would reduce the formation of a lymphatic reservoir of Mtb in humans.


Assuntos
Citosol/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Líquido Intracelular/efeitos dos fármacos , Lipídeos/toxicidade , Mycobacterium tuberculosis/efeitos dos fármacos , Citosol/metabolismo , Citosol/microbiologia , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Humanos , Líquido Intracelular/metabolismo , Líquido Intracelular/microbiologia , Mycobacterium tuberculosis/metabolismo , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia
13.
Traffic ; 17(3): 211-29, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26663757

RESUMO

Rab9 is a small GTPase that localizes to the trans-Golgi Network (TGN) and late endosomes. Its main function has long been connected to the recycling of mannose-6-phosphate receptors (MPRs). However, recent studies link Rab9 also to autophagy and lysosome biogenesis. In this paper, using confocal imaging, we characterize for the first time the live dynamics of the Rab9 constitutively active mutant, Rab9Q66L. We find that it localizes predominantly to late endosomes and that its expression in HeLa cells disperses TGN46 and cation-independent (CI-MPR) away from the Golgi yet, has no effect on the retrograde transport of CI-MPR. We also show that CI-MPR and Rab9 enter the endosomal pathway together at the transition stage between early, Rab5-positive, and late, Rab7a-positive, endosomes. CI-MPR localizes transiently to separate domains on these endosomes, where vesicles carrying CI-MPR attach and detach within seconds. Taken together, our results demonstrate that Rab9 mediates the delivery of CI-MPR to the endosomal pathway, entering the maturing endosome at the early-to-late transition.


Assuntos
Endossomos/metabolismo , Receptor IGF Tipo 2/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Cães , Endocitose , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Glicoproteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Transporte Proteico , Proteínas rab de Ligação ao GTP/genética , Rede trans-Golgi/metabolismo
14.
PLoS Pathog ; 12(5): e1005616, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27159323

RESUMO

Enteropathogenic Escherichia coli (EPEC) represents a major causative agent of infant diarrhea associated with significant morbidity and mortality in developing countries. Although studied extensively in vitro, the investigation of the host-pathogen interaction in vivo has been hampered by the lack of a suitable small animal model. Using RT-PCR and global transcriptome analysis, high throughput 16S rDNA sequencing as well as immunofluorescence and electron microscopy, we characterize the EPEC-host interaction following oral challenge of newborn mice. Spontaneous colonization of the small intestine and colon of neonate mice that lasted until weaning was observed. Intimate attachment to the epithelial plasma membrane and microcolony formation were visualized only in the presence of a functional bundle forming pili (BFP) and type III secretion system (T3SS). Similarly, a T3SS-dependent EPEC-induced innate immune response, mediated via MyD88, TLR5 and TLR9 led to the induction of a distinct set of genes in infected intestinal epithelial cells. Infection-induced alterations of the microbiota composition remained restricted to the postnatal period. Although EPEC colonized the adult intestine in the absence of a competing microbiota, no microcolonies were observed at the small intestinal epithelium. Here, we introduce the first suitable mouse infection model and describe an age-dependent, virulence factor-dependent attachment of EPEC to enterocytes in vivo.


Assuntos
Modelos Animais de Doenças , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Animais , Animais Recém-Nascidos , Suscetibilidade a Doenças/microbiologia , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Fímbrias Bacterianas/ultraestrutura , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Análise de Sequência com Séries de Oligonucleotídeos , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo
15.
Int J Med Microbiol ; 308(1): 97-106, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28939439

RESUMO

The molecular processes that govern host-microbial interaction illustrate not only the sophisticated and multifaceted mechanisms that protect the host from infection, but also the elaborated features of microbial pathogens that have evolved to overcome or evade the host's immune system. Here we focus on Salmonella that like other enteric pathogens must overcome the intestinal mucosal immune system, a surface constantly on alert and evolved to restrict the enteric microbiota. We discuss the initial step of Salmonella infection, the penetration of the intestinal epithelial barrier and the models used to study this fascinating aspect of microbial pathogenesis.


Assuntos
Mucosa Intestinal/microbiologia , Infecções por Salmonella/microbiologia , Salmonella/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Humanos , Imunidade nas Mucosas , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Modelos Biológicos , Salmonella/imunologia , Infecções por Salmonella/imunologia , Vacúolos/metabolismo , Vacúolos/microbiologia , Vacúolos/ultraestrutura
16.
Int J Med Microbiol ; 308(1): 142-147, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29055689

RESUMO

M. tuberculosis is one of the prime killers from infectious diseases worldwide. Infections with multidrug-resistant variants counting for almost half a million new cases per year are steadily on the rise. Tuberculosis caused by extensively drug-resistant variants that are even resistant against newly developed or last resort antibiotics have to be considered untreaTable Susceptible tuberculosis already requires a six-months combinational therapy which requires further prolongation to treat drug-resistant infections. Such long treatment schedules are often accompanied by serious adverse effects causing patients to stop therapy. To tackle the global tuberculosis emergency, novel approaches for treatment need to be urgently explored. Host-directed therapies that target components of the defense system represent such a novel approach. In this review, we put a spotlight on neutrophils and neutrophil-associated effectors as promising targets for adjunct host-directed therapies to improve antibiotic efficacy and reduce both, treatment time and long-term pathological sequelae.


Assuntos
Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Animais , Humanos , Lipídeos/imunologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/imunologia , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Neutrófilos/patologia , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/patologia
17.
Altern Lab Anim ; 46(2): 73-89, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29856645

RESUMO

In this study, we describe the isolation and immortalisation of primary murine alveolar epithelial cells (mAEpC), as well as their epithelial differentiation and barrier properties when grown on Transwell® inserts. Like human alveolar epithelial cells (hAEpC), mAEpC transdifferentiate in vitro from an alveolar type II (ATII) phenotype to an ATI-like phenotype and exhibit features of the air-blood barrier, such as the establishment of a thin monolayer with functional tight junctions (TJs). This is demonstrated by the expression of TJ proteins (ZO-1 and occludin) and the development of high transepithelial electrical resistance (TEER), peaking at 1800Ω ·cm². Transport across the air-blood barrier, for general toxicity assessments or preclinical drug development, is typically studied in mice. The aim of this work was the generation of novel immortalised murine lung cell lines, to help meet Three Rs requirements in experimental testing and research. To achieve this goal, we lentivirally transduced mAEpC of two different mouse strains with a library of 33 proliferation-promoting genes. With this immortalisation approach, we obtained two murine alveolar epithelial lentivirus-immortalised (mAELVi) cell lines. Both showed similar TJ protein localisation, but exhibited less prominent barrier properties (TEERmax ~250Ω·cm²) when compared to their primary counterparts. While mAEpC demonstrated their suitability for use in the assessment of paracellular transport rates, mAELVi cells could potentially replace mice for the prediction of acute inhalation toxicity during early ADMET studies.


Assuntos
Células Epiteliais Alveolares/citologia , Lentivirus/fisiologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/ultraestrutura , Animais , Diferenciação Celular , Células Cultivadas , Impedância Elétrica , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Junções Íntimas/análise
18.
Mol Pharm ; 14(11): 4098-4112, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28974092

RESUMO

The attenuated live vaccine strain bacille Calmette-Guérin (BCG) is currently the only available vaccine against tuberculosis (TB), but is largely ineffective against adult pulmonary TB, the most common disease form. This is in part due to BCG's ability to interfere with the host innate immune response, a feature that might be targeted to enhance the potency of this vaccine. Here, we investigated the ability of chitosan-based nanoparticles (pIC-NPs) containing polyinosinic-polycytidylic acid (poly(I:C)), an inducer of innate immunity via Toll-like receptor 3 (TLR3), to enhance the immunogenicity of BCG in mouse bone marrow derived macrophages (BMDM) in vitro. Incorporation of poly(I:C) into NPs protected it against degradation by ribonucleases and increased its uptake by mouse BMDM. Whereas soluble poly(I:C) was ineffective, pIC-NPs strongly enhanced the proinflammatory immune response of BCG-infected macrophages in a synergistic fashion, as evident by increased production of cytokines and induction of nitric oxide synthesis. Using macrophages from mice deficient in key signaling molecules involved in the pathogen recognition response, we identified combined activation of MyD88- and TRIF-dependent TLR signaling pathways to be essential for the synergistic effect between BCG and NP. Moreover, synergy was strongly dependent on the order of the two stimuli, with TLR activation by BCG functioning as the priming event for the subsequent pIC-NP stimulus, which acted through an auto-/paracrine type I interferon (IFN) feedback loop. Our results provide a foundation for a promising new approach to enhance BCG-vaccine immunogenicity by costimulation with NPs. They also contribute to a molecular understanding of the observed synergistic interaction between the pIC-NPs and BCG vaccine.


Assuntos
Vacina BCG/imunologia , Nanopartículas/química , Poli I-C/química , Animais , Imunidade Inata/fisiologia , Interferon Tipo I/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Camundongos , Receptor 3 Toll-Like/metabolismo
19.
J Biol Chem ; 290(22): 13800-11, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25833952

RESUMO

Cysteine cathepsins are primarily lysosomal proteases involved in general protein turnover, but they also have specific proteolytic functions in antigen presentation and bone remodeling. Cathepsins are most stable at acidic pH, although growing evidence indicates that they have physiologically relevant activity also at neutral pH. Post-translational proteolytic processing of mature chemokines is a key, yet underappreciated, level of chemokine regulation. Although the role of selected serine proteases and matrix metalloproteases in chemokine processing has long been known, little has been reported about the role of cysteine cathepsins. Here we evaluated cleavage of CXC ELR (CXCL1, -2, -3, -5, and -8) and non-ELR (CXCL9-12) chemokines by cysteine cathepsins B, K, L, and S at neutral pH by high resolution Tris-Tricine SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Whereas cathepsin B cleaved chemokines especially in the C-terminal region, cathepsins K, L, and S cleaved chemokines at the N terminus with glycosaminoglycans modulating cathepsin processing of chemokines. The functional consequences of the cleavages were determined by Ca(2+) mobilization and chemotaxis assays. We show that cysteine cathepsins inactivate and in some cases degrade non-ELR CXC chemokines CXCL9-12. In contrast, cathepsins specifically process ELR CXC chemokines CXCL1, -2, -3, -5, and -8 N-terminally to the ELR motif, thereby generating agonist forms. This study suggests that cysteine cathepsins regulate chemokine activity and thereby leukocyte recruitment during protective or pathological inflammation.


Assuntos
Catepsinas/metabolismo , Quimiocinas/metabolismo , Cisteína/metabolismo , Regulação da Expressão Gênica , Cálcio/metabolismo , Linhagem Celular , Movimento Celular , Quimiotaxia , Fibroblastos/metabolismo , Glicosaminoglicanos/metabolismo , Granulócitos/citologia , Humanos , Concentração de Íons de Hidrogênio , Inflamação , Espectrometria de Massas , Neutrófilos/citologia , Estrutura Terciária de Proteína , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
J Biol Chem ; 290(22): 14166-80, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25903133

RESUMO

The vacuolar H(+)-ATPase (v-ATPase) complex is instrumental in establishing and maintaining acidification of some cellular compartments, thereby ensuring their functionality. Recently it has been proposed that the transmembrane V0 sector of v-ATPase and its a-subunits promote membrane fusion in the endocytic and exocytic pathways independent of their acidification functions. Here, we tested if such a proton-pumping independent role of v-ATPase also applies to phagosome-lysosome fusion. Surprisingly, endo(lyso)somes in mouse embryonic fibroblasts lacking the V0 a3 subunit of the v-ATPase acidified normally, and endosome and lysosome marker proteins were recruited to phagosomes with similar kinetics in the presence or absence of the a3 subunit. Further experiments used macrophages with a knockdown of v-ATPase accessory protein 2 (ATP6AP2) expression, resulting in a strongly reduced level of the V0 sector of the v-ATPase. However, acidification appeared undisturbed, and fusion between latex bead-containing phagosomes and lysosomes, as analyzed by electron microscopy, was even slightly enhanced, as was killing of non-pathogenic bacteria by V0 mutant macrophages. Pharmacologically neutralized lysosome pH did not affect maturation of phagosomes in mouse embryonic cells or macrophages. Finally, locking the two large parts of the v-ATPase complex together by the drug saliphenylhalamide A did not inhibit in vitro and in cellulo fusion of phagosomes with lysosomes. Hence, our data do not suggest a fusion-promoting role of the v-ATPase in the formation of phagolysosomes.


Assuntos
Lisossomos/metabolismo , Fagossomos/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Receptores de Superfície Celular/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Escherichia coli/metabolismo , Feminino , Fibroblastos/metabolismo , Concentração de Íons de Hidrogênio , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Fusão de Membrana , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica , Microscopia de Fluorescência , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA