Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 608(7923): 586-592, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859170

RESUMO

The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning1-7. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity8-11 with the longer timescales separating the predictive cues from their outcomes. Here we demonstrate that neurotensin (NT)-expressing neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting NT concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, whereas PVT-BLA projection-specific knockout of the NT gene (Nts) augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nts gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference for active behavioural strategies to reward and punishment predictive cues. In sum, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviourally relevant timescales.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Aprendizagem , Vias Neurais , Neurotensina , Punição , Recompensa , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Cálcio/metabolismo , Sinais (Psicologia) , Plasticidade Neuronal , Neurotensina/metabolismo , Optogenética , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia
2.
Mol Psychiatry ; 29(3): 611-623, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38195980

RESUMO

Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p-FDR < 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.


Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/patologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Cerebelo/patologia , Cerebelo/diagnóstico por imagem , Feminino , Masculino , Adulto , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Substância Cinzenta/patologia , Tamanho do Órgão , Aprendizado Profundo
3.
Psychol Med ; 54(2): 338-349, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37309917

RESUMO

BACKGROUND: Several hypotheses may explain the association between substance use, posttraumatic stress disorder (PTSD), and depression. However, few studies have utilized a large multisite dataset to understand this complex relationship. Our study assessed the relationship between alcohol and cannabis use trajectories and PTSD and depression symptoms across 3 months in recently trauma-exposed civilians. METHODS: In total, 1618 (1037 female) participants provided self-report data on past 30-day alcohol and cannabis use and PTSD and depression symptoms during their emergency department (baseline) visit. We reassessed participant's substance use and clinical symptoms 2, 8, and 12 weeks posttrauma. Latent class mixture modeling determined alcohol and cannabis use trajectories in the sample. Changes in PTSD and depression symptoms were assessed across alcohol and cannabis use trajectories via a mixed-model repeated-measures analysis of variance. RESULTS: Three trajectory classes (low, high, increasing use) provided the best model fit for alcohol and cannabis use. The low alcohol use class exhibited lower PTSD symptoms at baseline than the high use class; the low cannabis use class exhibited lower PTSD and depression symptoms at baseline than the high and increasing use classes; these symptoms greatly increased at week 8 and declined at week 12. Participants who already use alcohol and cannabis exhibited greater PTSD and depression symptoms at baseline that increased at week 8 with a decrease in symptoms at week 12. CONCLUSIONS: Our findings suggest that alcohol and cannabis use trajectories are associated with the intensity of posttrauma psychopathology. These findings could potentially inform the timing of therapeutic strategies.


Assuntos
Cannabis , Transtornos de Estresse Pós-Traumáticos , Transtornos Relacionados ao Uso de Substâncias , Humanos , Feminino , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Depressão/diagnóstico , Transtornos Relacionados ao Uso de Substâncias/complicações , Psicopatologia
4.
Mol Psychiatry ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932158

RESUMO

Childhood trauma is a known risk factor for trauma and stress-related disorders in adulthood. However, limited research has investigated the impact of childhood trauma on brain structure linked to later posttraumatic dysfunction. We investigated the effect of childhood trauma on white matter microstructure after recent trauma and its relationship with future posttraumatic dysfunction among trauma-exposed adult participants (n = 202) recruited from emergency departments as part of the AURORA Study. Participants completed self-report scales assessing prior childhood maltreatment within 2-weeks in addition to assessments of PTSD, depression, anxiety, and dissociation symptoms within 6-months of their traumatic event. Fractional anisotropy (FA) obtained from diffusion tensor imaging (DTI) collected at 2-weeks and 6-months was used to index white matter microstructure. Childhood maltreatment load predicted 6-month PTSD symptoms (b = 1.75, SE = 0.78, 95% CI = [0.20, 3.29]) and inversely varied with FA in the bilateral internal capsule (IC) at 2-weeks (p = 0.0294, FDR corrected) and 6-months (p = 0.0238, FDR corrected). We observed a significant indirect effect of childhood maltreatment load on 6-month PTSD symptoms through 2-week IC microstructure (b = 0.37, Boot SE = 0.18, 95% CI = [0.05, 0.76]) that fully mediated the effect of childhood maltreatment load on PCL-5 scores (b = 1.37, SE = 0.79, 95% CI = [-0.18, 2.93]). IC microstructure did not mediate relationships between childhood maltreatment and depressive, anxiety, or dissociative symptomatology. Our findings suggest a unique role for IC microstructure as a stable neural pathway between childhood trauma and future PTSD symptoms following recent trauma. Notably, our work did not support roles of white matter tracts previously found to vary with PTSD symptoms and childhood trauma exposure, including the cingulum bundle, uncinate fasciculus, and corpus callosum. Given the IC contains sensory fibers linked to perception and motor control, childhood maltreatment might impact the neural circuits that relay and process threat-related inputs and responses to trauma.

5.
J Trauma Stress ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837449

RESUMO

The Institute for Trauma-Informed Systems Change (ITISC) facilitated a 2-day, 12-hr trauma-informed workshop, delivered virtually, using the Training for Change curriculum. The workshop took place in Portuguese in September 2021 with a group of Angolan leaders (N = 51) and in May 2022, in English, with neonatal intensive care unit (NICU) workers from the United States (N = 73). Surveys were administered before (Time [T] 0) and after the workshop (T1) and consisted of demographic questions and the Survey for Trauma-Informed Systems Change (STISC), which assesses system-wide knowledge and attitudes about trauma-informed systems change and the intersection of culture, safety, and acceptance in the workplace. At T1, 18 (35.3%) participants in the Angolan leaders' group and 46 (63.0%) in the NICU group completed the surveys. Mean scores on the STISC Self-Assessed Knowledge and Attitudes subscale and STISC System-Wide Knowledge and Attitudes subscale increased significantly in both groups after the training. Effect sizes were large for self-assessed knowledge and attitudes, Angolan leaders: d = 1.11, NICU: d = 1.97, and small-to-medium for system-wide knowledge and attitudes, Angolan leaders: d = 0.52, NICU: d = 0.38. Limitations include the relatively small sample size and low participation rates for survey responses. Future research should examine the efficacy of the curriculum in larger samples that include individuals from diverse professions and additional countries. Together, the findings provide initial support that this training can be directly translated and implemented on a global scale.

6.
J Neurosci ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879096

RESUMO

Hippocampal impairments are reliably associated with post-traumatic stress disorder (PTSD); however, little research has characterized how increased threat-sensitivity may interact with arousal responses to alter hippocampal reactivity, and further how these interactions relate to the sequelae of trauma-related symptoms. In a sample of individuals recently exposed to trauma (N=116, 76 Female), we found that PTSD symptoms at 2-weeks were associated with decreased hippocampal responses to threat as assessed with functional magnetic resonance imaging (fMRI). Further, the relationship between hippocampal threat sensitivity and PTSD symptomology only emerged in individuals who showed transient, high threat-related arousal, as assayed by an independently collected measure of Fear Potentiated Startle. Collectively, our finding suggests that development of PTSD is associated with threat-related decreases in hippocampal function, due to increases in fear-potentiated arousal.Significance StatementAlterations in hippocampal function linked to threat-related arousal are reliably associated with post-traumatic stress disorder (PTSD); however, how these alterations relate to the sequelae of trauma-related symptoms is unknown. Prior models based on non-trauma samples suggest that arousal may impact hippocampal neurophysiology leading to maladaptive behavior. Here we show that decreased hippocampal threat sensitivity interacts with fear-potentiated startle to predict PTSD symptoms. Specifically, individuals with high fear-potentiated startle and low, transient hippocampal threat sensitivity showed the greatest PTSD symptomology. These findings bridge literatures of threat-related arousal and hippocampal function to better understand PTSD risk.

7.
Cogn Affect Behav Neurosci ; 23(3): 894-904, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165181

RESUMO

Traumatic events can lead to lifelong, inflexible adaptations in threat perception and behavior, which characterize posttraumatic stress disorder (PTSD). This process involves associations between sensory cues and internal states of threat and then generalization of the threat responses to previously neutral cues. However, most formulations neglect adaptations to threat that are not specific to those associations. To incorporate nonassociative responses to threat, we propose a computational theory of PTSD based on adaptation to the frequency of traumatic events by using a reinforcement learning momentum model. Recent threat prediction errors generate momentum that influences subsequent threat perception in novel contexts. This model fits primary data acquired from a mouse model of PTSD, in which unpredictable footshocks in one context accelerate threat learning in a novel context. The theory is consistent with epidemiological data that show that PTSD incidence increases with the number of traumatic events, as well as the disproportionate impact of early life trauma. Because the theory proposes that PTSD relates to the average of recent threat prediction errors rather than the strength of a specific association, it makes novel predictions for the treatment of PTSD.

8.
Nat Rev Neurosci ; 19(9): 535-551, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30054570

RESUMO

Post-traumatic stress disorder (PTSD) is a prevalent, debilitating and sometimes deadly consequence of exposure to severe psychological trauma. Although effective treatments exist for some individuals, they are limited. New approaches to intervention, treatment and prevention are therefore much needed. In the past few years, the field has rapidly developed a greater understanding of the dysfunctional brain circuits underlying PTSD, a shift in understanding that has been made possible by technological revolutions that have allowed the observation and perturbation of the macrocircuits and microcircuits thought to underlie PTSD-related symptoms. These advances have allowed us to gain a more translational knowledge of PTSD, have provided further insights into the mechanisms of risk and resilience and offer promising avenues for therapeutic discovery.


Assuntos
Encéfalo/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Vias Neurais/fisiopatologia , Neurônios/fisiologia , Transtornos de Estresse Pós-Traumáticos/psicologia
9.
Psychol Med ; 53(10): 4528-4538, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35611817

RESUMO

BACKGROUND: Causes of childhood behavior problems remain poorly understood. Enriched family environments and corresponding brain development may reduce the risk of their onset, but research investigating white matter neurodevelopmental pathways explaining associations between the family environment and behavior remains limited. We hypothesized that more positive prenatal and mid-childhood family functioning - a measure of a family's problem solving and supportive capacity - would be associated with two markers of preadolescent white matter neurodevelopment related to reduced behavior problems: higher global fractional anisotropy (FA) and lower global mean diffusivity (MD). METHODS: Data are from 2727 families in the Generation R Study, the Netherlands. Mothers reported family functioning (McMaster Family Assessment Device, range 1-4, higher scores indicate healthier functioning) prenatally and in mid-childhood (mean age 6.1 years). In preadolescence (mean age 10.1), the study collected diffusion-weighted scans. We computed standardized global MD and FA values by averaging metrics from 27 white matter tracts, and we fit linear models adjusting for possible confounders to examine global and tract-specific outcomes. RESULTS: Prenatal and mid-childhood family functioning scores were moderately correlated, r = 0.38. However, only prenatal family functioning - and not mid-childhood functioning - was associated with higher global FA and lower global MD in preadolescence in fully adjusted models: ßglobal FA = 0.11 (95% CI 0.00, 0.21) and ßglobal MD = -0.15 (95% CI -0.28, -0.03) per one-unit increase in functioning score. Sensitivity and tract-specific analyses supported these global findings. CONCLUSIONS: These results suggest high-functioning prenatal or perinatal family environments may confer lasting white matter neurodevelopmental benefits into preadolescence.


Assuntos
Comportamento Problema , Substância Branca , Feminino , Gravidez , Humanos , Criança , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Mães , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem
10.
Psychol Med ; 53(15): 7170-7179, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36951141

RESUMO

BACKGROUND: Psychological trauma exposure and posttraumatic stress disorder (PTSD) have been associated with advanced epigenetic age. However, whether epigenetic aging measured at the time of trauma predicts the subsequent development of PTSD outcomes is unknown. Moreover, the neural substrates underlying posttraumatic outcomes associated with epigenetic aging are unclear. METHODS: We examined a multi-ancestry cohort of women and men (n = 289) who presented to the emergency department (ED) after trauma. Blood DNA was collected at ED presentation, and EPIC DNA methylation arrays were used to assess four widely used metrics of epigenetic aging (HorvathAge, HannumAge, PhenoAge, and GrimAge). PTSD symptoms were evaluated longitudinally at the time of ED presentation and over the ensuing 6 months. Structural and functional neuroimaging was performed 2 weeks after trauma. RESULTS: After covariate adjustment and correction for multiple comparisons, advanced ED GrimAge predicted increased risk for 6-month probable PTSD diagnosis. Secondary analyses suggested that the prediction of PTSD by GrimAge was driven by worse trajectories for intrusive memories and nightmares. Advanced ED GrimAge was also associated with reduced volume of the whole amygdala and specific amygdala subregions, including the cortico-amygdaloid transition and the cortical and accessory basal nuclei. CONCLUSIONS: Our findings shed new light on the relation between biological aging and trauma-related phenotypes, suggesting that GrimAge measured at the time of trauma predicts PTSD trajectories and is associated with relevant brain alterations. Furthering these findings has the potential to enhance early prevention and treatment of posttraumatic psychiatric sequelae.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Masculino , Humanos , Feminino , Transtornos de Estresse Pós-Traumáticos/psicologia , Envelhecimento , Tonsila do Cerebelo/diagnóstico por imagem , Neuroimagem Funcional , Epigênese Genética
11.
Brain Behav Immun ; 114: 360-370, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37689277

RESUMO

Posttraumatic stress disorder (PTSD) occurs in some people following exposure to a terrifying or catastrophic event involving actual/threatened death, serious injury, or sexual violence. PTSD is a common and debilitating mental disorder that imposes a significant burden on individuals, their families, health services, and society. Moreover, PTSD is a risk factor for chronic diseases such as coronary heart disease, stroke, diabetes, as well as premature mortality. Furthermore, PTSD is associated with dysregulated immune function. Despite the high prevalence of PTSD, the mechanisms underlying its etiology and manifestations remain poorly understood. Compelling evidence indicates that the human gut microbiome, a complex community of microorganisms living in the gastrointestinal tract, plays a crucial role in the development and function of the host nervous system, complex behaviors, and brain circuits. The gut microbiome may contribute to PTSD by influencing inflammation, stress responses, and neurotransmitter signaling, while bidirectional communication between the gut and brain involves mechanisms such as microbial metabolites, immune system activation, and the vagus nerve. In this literature review, we summarize recent findings on the role of the gut microbiome in PTSD in both human and animal studies. We discuss the methodological limitations of existing studies and suggest future research directions to further understand the role of the gut microbiome in PTSD.


Assuntos
Microbioma Gastrointestinal , Transtornos de Estresse Pós-Traumáticos , Animais , Humanos , Transtornos de Estresse Pós-Traumáticos/metabolismo , Microbioma Gastrointestinal/fisiologia , Encéfalo/metabolismo , Sistema Nervoso Central , Fatores de Risco
12.
Mol Psychiatry ; 27(7): 3075-3084, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35449297

RESUMO

Genome-wide association studies (GWAS) have identified several risk loci for post-traumatic stress disorder (PTSD); however, how they confer PTSD risk remains unclear. We aimed to identify genes that confer PTSD risk through their effects on brain protein abundance to provide new insights into PTSD pathogenesis. To that end, we integrated human brain proteomes with PTSD GWAS results to perform a proteome-wide association study (PWAS) of PTSD, followed by Mendelian randomization, using a discovery and confirmatory study design. Brain proteomes (N = 525) were profiled from the dorsolateral prefrontal cortex using mass spectrometry. The Million Veteran Program (MVP) PTSD GWAS (n = 186,689) was used for the discovery PWAS, and the Psychiatric Genomics Consortium PTSD GWAS (n = 174,659) was used for the confirmatory PWAS. To understand whether genes identified at the protein-level were also evident at the transcript-level, we performed a transcriptome-wide association study (TWAS) using human brain transcriptomes (N = 888) and the MVP PTSD GWAS results. We identified 11 genes that contribute to PTSD pathogenesis via their respective cis-regulated brain protein abundance. Seven of 11 genes (64%) replicated in the confirmatory PWAS and 4 of 11 also had their cis-regulated brain mRNA levels associated with PTSD. High confidence level was assigned to 9 of 11 genes after considering evidence from the confirmatory PWAS and TWAS. Most of the identified genes are expressed in other PTSD-relevant brain regions and several are preferentially expressed in excitatory neurons, astrocytes, and oligodendrocyte precursor cells. These genes are novel, promising targets for mechanistic and therapeutic studies to find new treatments for PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Veteranos , Encéfalo , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único/genética , Proteoma/genética , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/psicologia , Transcriptoma , Veteranos/psicologia
13.
Proc Natl Acad Sci U S A ; 117(38): 23329-23335, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-31611402

RESUMO

The development of biological markers of aging has primarily focused on adult samples. Epigenetic clocks are a promising tool for measuring biological age that show impressive accuracy across most tissues and age ranges. In adults, deviations from the DNA methylation (DNAm) age prediction are correlated with several age-related phenotypes, such as mortality and frailty. In children, however, fewer such associations have been made, possibly because DNAm changes are more dynamic in pediatric populations as compared to adults. To address this gap, we aimed to develop a highly accurate, noninvasive, biological measure of age specific to pediatric samples using buccal epithelial cell DNAm. We gathered 1,721 genome-wide DNAm profiles from 11 different cohorts of typically developing individuals aged 0 to 20 y old. Elastic net penalized regression was used to select 94 CpG sites from a training dataset (n = 1,032), with performance assessed in a separate test dataset (n = 689). DNAm at these 94 CpG sites was highly predictive of age in the test cohort (median absolute error = 0.35 y). The Pediatric-Buccal-Epigenetic (PedBE) clock was characterized in additional cohorts, showcasing the accuracy in longitudinal data, the performance in nonbuccal tissues and adult age ranges, and the association with obstetric outcomes. The PedBE tool for measuring biological age in children might help in understanding the environmental and contextual factors that shape the DNA methylome during child development, and how it, in turn, might relate to child health and disease.


Assuntos
Epigenômica/métodos , Células Epiteliais/metabolismo , Mucosa Bucal/citologia , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Mucosa Bucal/metabolismo , Adulto Jovem
14.
Dev Psychobiol ; 65(5): e22398, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37338254

RESUMO

Violence victimization may cause child behavior problems and neurostructural differences associated with them. Healthy family environments may buffer these effects, but neural pathways explaining these associations remain inadequately understood. We used data from 3154 children (x̅age  = 10.1) to test whether healthy family functioning moderated possible associations between violence victimization, behavior problems, and amygdala volume (a threat-responsive brain region). Researchers collected data on childhood violence victimization, family functioning (McMaster Family Assessment Device, range 0-3, higher scores indicate healthier functioning), and behavior problems (Achenbach Child Behavior Checklist [CBCL] total problem score, range 0-117), and they scanned children with magnetic resonance imaging. We standardized amygdala volumes and fit confounder-adjusted models with "victimization × family functioning" interaction terms. Family functioning moderated associations between victimization, behavior problems, and amygdala volume. Among lower functioning families (functioning score = 1.0), victimization was associated with a 26.1 (95% confidence interval [CI]: 9.9, 42.4) unit higher CBCL behavior problem score, yet victimized children from higher functioning families (score = 3.0) exhibited no such association. Unexpectedly, victimization was associated with higher standardized amygdala volume among lower functioning families (y = 0.5; 95% CI: 0.1, 1.0) but lower volume among higher functioning families (y = -0.4; 95% CI: -0.7, -0.2). Thus, healthy family environments may mitigate some neurobehavioral effects of childhood victimization.


Assuntos
Bullying , Vítimas de Crime , Comportamento Problema , Criança , Humanos , Abuso Físico , Violência
15.
Psychol Med ; 52(10): 1934-1947, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33118917

RESUMO

BACKGROUND: This is the first report on the association between trauma exposure and depression from the Advancing Understanding of RecOvery afteR traumA(AURORA) multisite longitudinal study of adverse post-traumatic neuropsychiatric sequelae (APNS) among participants seeking emergency department (ED) treatment in the aftermath of a traumatic life experience. METHODS: We focus on participants presenting at EDs after a motor vehicle collision (MVC), which characterizes most AURORA participants, and examine associations of participant socio-demographics and MVC characteristics with 8-week depression as mediated through peritraumatic symptoms and 2-week depression. RESULTS: Eight-week depression prevalence was relatively high (27.8%) and associated with several MVC characteristics (being passenger v. driver; injuries to other people). Peritraumatic distress was associated with 2-week but not 8-week depression. Most of these associations held when controlling for peritraumatic symptoms and, to a lesser degree, depressive symptoms at 2-weeks post-trauma. CONCLUSIONS: These observations, coupled with substantial variation in the relative strength of the mediating pathways across predictors, raises the possibility of diverse and potentially complex underlying biological and psychological processes that remain to be elucidated in more in-depth analyses of the rich and evolving AURORA database to find new targets for intervention and new tools for risk-based stratification following trauma exposure.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/psicologia , Depressão/epidemiologia , Estudos Longitudinais , Acidentes de Trânsito/psicologia , Prevalência , Veículos Automotores
16.
Mol Psychiatry ; 26(8): 4300-4314, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33339956

RESUMO

Post-traumatic stress disorder (PTSD) is a heterogeneous condition evidenced by the absence of objective physiological measurements applicable to all who meet the criteria for the disorder as well as divergent responses to treatments. This study capitalized on biological diversity observed within the PTSD group observed following epigenome-wide analysis of a well-characterized Discovery cohort (N = 166) consisting of 83 male combat exposed veterans with PTSD, and 83 combat veterans without PTSD in order to identify patterns that might distinguish subtypes. Computational analysis of DNA methylation (DNAm) profiles identified two PTSD biotypes within the PTSD+ group, G1 and G2, associated with 34 clinical features that are associated with PTSD and PTSD comorbidities. The G2 biotype was associated with an increased PTSD risk and had higher polygenic risk scores and a greater methylation compared to the G1 biotype and healthy controls. The findings were validated at a 3-year follow-up (N = 59) of the same individuals as well as in two independent, veteran cohorts (N = 54 and N = 38), and an active duty cohort (N = 133). In some cases, for example Dopamine-PKA-CREB and GABA-PKC-CREB signaling pathways, the biotypes were oppositely dysregulated, suggesting that the biotypes were not simply a function of a dimensional relationship with symptom severity, but may represent distinct biological risk profiles underpinning PTSD. The identification of two novel distinct epigenetic biotypes for PTSD may have future utility in understanding biological and clinical heterogeneity in PTSD and potential applications in risk assessment for active duty military personnel under non-clinician-administered settings, and improvement of PTSD diagnostic markers.


Assuntos
Militares , Transtornos de Estresse Pós-Traumáticos , Veteranos , Epigênese Genética/genética , Epigenoma , Humanos , Masculino , Transtornos de Estresse Pós-Traumáticos/genética
17.
Mol Psychiatry ; 26(9): 5011-5022, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32488126

RESUMO

Active-duty Army personnel can be exposed to traumatic warzone events and are at increased risk for developing post-traumatic stress disorder (PTSD) compared with the general population. PTSD is associated with high individual and societal costs, but identification of predictive markers to determine deployment readiness and risk mitigation strategies is not well understood. This prospective longitudinal naturalistic cohort study-the Fort Campbell Cohort study-examined the value of using a large multidimensional dataset collected from soldiers prior to deployment to Afghanistan for predicting post-deployment PTSD status. The dataset consisted of polygenic, epigenetic, metabolomic, endocrine, inflammatory and routine clinical lab markers, computerized neurocognitive testing, and symptom self-reports. The analysis was computed on active-duty Army personnel (N = 473) of the 101st Airborne at Fort Campbell, Kentucky. Machine-learning models predicted provisional PTSD diagnosis 90-180 days post deployment (random forest: AUC = 0.78, 95% CI = 0.67-0.89, sensitivity = 0.78, specificity = 0.71; SVM: AUC = 0.88, 95% CI = 0.78-0.98, sensitivity = 0.89, specificity = 0.79) and longitudinal PTSD symptom trajectories identified with latent growth mixture modeling (random forest: AUC = 0.85, 95% CI = 0.75-0.96, sensitivity = 0.88, specificity = 0.69; SVM: AUC = 0.87, 95% CI = 0.79-0.96, sensitivity = 0.80, specificity = 0.85). Among the highest-ranked predictive features were pre-deployment sleep quality, anxiety, depression, sustained attention, and cognitive flexibility. Blood-based biomarkers including metabolites, epigenomic, immune, inflammatory, and liver function markers complemented the most important predictors. The clinical prediction of post-deployment symptom trajectories and provisional PTSD diagnosis based on pre-deployment data achieved high discriminatory power. The predictive models may be used to determine deployment readiness and to determine novel pre-deployment interventions to mitigate the risk for deployment-related PTSD.


Assuntos
Militares , Transtornos de Estresse Pós-Traumáticos , Afeganistão , Estudos de Coortes , Humanos , Aprendizado de Máquina , Estudos Prospectivos , Fatores de Risco , Qualidade do Sono
18.
Mol Psychiatry ; 26(7): 3077-3092, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963278

RESUMO

Posttraumatic stress disorder (PTSD) is a debilitating syndrome with substantial morbidity and mortality that occurs in the aftermath of trauma. Symptoms of major depressive disorder (MDD) are also a frequent consequence of trauma exposure. Identifying novel risk markers in the immediate aftermath of trauma is a critical step for the identification of novel biological targets to understand mechanisms of pathophysiology and prevention, as well as the determination of patients most at risk who may benefit from immediate intervention. Our study utilizes a novel approach to computationally integrate blood-based transcriptomics, genomics, and interactomics to understand the development of risk vs. resilience in the months following trauma exposure. In a two-site longitudinal, observational prospective study, we assessed over 10,000 individuals and enrolled >700 subjects in the immediate aftermath of trauma (average 5.3 h post-trauma (range 0.5-12 h)) in the Grady Memorial Hospital (Atlanta) and Jackson Memorial Hospital (Miami) emergency departments. RNA expression data and 6-month follow-up data were available for 366 individuals, while genotype, transcriptome, and phenotype data were available for 297 patients. To maximize our power and understanding of genes and pathways that predict risk vs. resilience, we utilized a set-cover approach to capture fluctuations of gene expression of PTSD or depression-converting patients and non-converting trauma-exposed controls to find representative sets of disease-relevant dysregulated genes. We annotated such genes with their corresponding expression quantitative trait loci and applied a variant of a current flow algorithm to identify genes that potentially were causal for the observed dysregulation of disease genes involved in the development of depression and PTSD symptoms after trauma exposure. We obtained a final list of 11 driver causal genes related to MDD symptoms, 13 genes for PTSD symptoms, and 22 genes in PTSD and/or MDD. We observed that these individual or combined disorders shared ESR1, RUNX1, PPARA, and WWOX as driver causal genes, while other genes appeared to be causal driver in the PTSD only or MDD only cases. A number of these identified causal pathways have been previously implicated in the biology or genetics of PTSD and MDD, as well as in preclinical models of amygdala function and fear regulation. Our work provides a promising set of initial pathways that may underlie causal mechanisms in the development of PTSD or MDD in the aftermath of trauma.


Assuntos
Transtorno Depressivo Maior , Transtornos de Estresse Pós-Traumáticos , Depressão , Transtorno Depressivo Maior/genética , Genômica , Humanos , Estudos Prospectivos , Transtornos de Estresse Pós-Traumáticos/genética , Transcriptoma/genética
19.
Mol Psychiatry ; 26(7): 3060-3076, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33649453

RESUMO

Disturbed activation or regulation of the stress response through the hypothalamic-pituitary-adrenal (HPA) axis is a fundamental component of multiple stress-related diseases, including psychiatric, metabolic, and immune disorders. The FK506 binding protein 51 (FKBP5) is a negative regulator of the glucocorticoid receptor (GR), the main driver of HPA axis regulation, and FKBP5 polymorphisms have been repeatedly linked to stress-related disorders in humans. However, the specific role of Fkbp5 in the paraventricular nucleus of the hypothalamus (PVN) in shaping HPA axis (re)activity remains to be elucidated. We here demonstrate that the deletion of Fkbp5 in Sim1+ neurons dampens the acute stress response and increases GR sensitivity. In contrast, Fkbp5 overexpression in the PVN results in a chronic HPA axis over-activation, and a PVN-specific rescue of Fkbp5 expression in full Fkbp5 KO mice normalizes the HPA axis phenotype. Single-cell RNA sequencing revealed the cell-type-specific expression pattern of Fkbp5 in the PVN and showed that Fkbp5 expression is specifically upregulated in Crh+ neurons after stress. Finally, Crh-specific Fkbp5 overexpression alters Crh neuron activity, but only partially recapitulates the PVN-specific Fkbp5 overexpression phenotype. Together, the data establish the central and cell-type-specific importance of Fkbp5 in the PVN in shaping HPA axis regulation and the acute stress response.


Assuntos
Sistema Hipotálamo-Hipofisário , Núcleo Hipotalâmico Paraventricular , Estresse Fisiológico , Proteínas de Ligação a Tacrolimo , Animais , Corticosterona , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Proteínas de Ligação a Tacrolimo/genética
20.
Mol Psychiatry ; 26(7): 3108-3121, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33077855

RESUMO

This is the initial report of results from the AURORA multisite longitudinal study of adverse post-traumatic neuropsychiatric sequelae (APNS) among participants seeking emergency department (ED) treatment in the aftermath of a traumatic life experience. We focus on n = 666 participants presenting to EDs following a motor vehicle collision (MVC) and examine associations of participant socio-demographic and participant-reported MVC characteristics with 8-week posttraumatic stress disorder (PTSD) adjusting for pre-MVC PTSD and mediated by peritraumatic symptoms and 2-week acute stress disorder (ASD). Peritraumatic Symptoms, ASD, and PTSD were assessed with self-report scales. Eight-week PTSD prevalence was relatively high (42.0%) and positively associated with participant sex (female), low socioeconomic status (education and income), and several self-report indicators of MVC severity. Most of these associations were entirely mediated by peritraumatic symptoms and, to a lesser degree, ASD, suggesting that the first 2 weeks after trauma may be a uniquely important time period for intervening to prevent and reduce risk of PTSD. This observation, coupled with substantial variation in the relative strength of mediating pathways across predictors, raises the possibility of diverse and potentially complex underlying biological and psychological processes that remain to be elucidated with more in-depth analyses of the rich and evolving AURORA data.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Acidentes de Trânsito , Feminino , Humanos , Estudos Longitudinais , Veículos Automotores , Prevalência , Transtornos de Estresse Pós-Traumáticos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA