Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39104320

RESUMO

In pulmonary hypertension (PHTN), a metabolic shift to aerobic glycolysis promotes a hyperproliferative, apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells (PASMC). Enhanced glycolysis induces extracellular acidosis, which can activate proton-sensing membrane receptors and ion channels. We previously reported activation of the proton-gated cation channel, acid-sensing ion channel 1a (ASIC1a), contributes to the development of hypoxic PHTN. Therefore, we hypothesize that enhanced glycolysis and subsequent acidification of the PASMC extracellular microenvironment activates ASIC1a in hypoxic PHTN. We observed decreased oxygen consumption rate and increased extracellular acidification rate in PASMC from chronic hypoxia (CH)-induced PHTN rats, indicating a shift to aerobic glycolysis. Additionally, we found that intracellular alkalization and extracellular acidification occur in PASMC following CH, and in vitro hypoxia, which was prevented by inhibition of glycolysis with 2-deoxy-D-glucose (2-DG). Inhibiting H+transport/secretion through carbonic anhydrase IX, Na+/H+ exchanger 1, or vacuolar-type H+-ATPase did not prevent this pH shift following hypoxia. Although the putative monocarboxylate transporter 1 (MCT1) and -4 (MCT4) inhibitor, syrosingopine, prevented the pH shift; the specific MCT1 inhibitor, AZD3965, and/or the MCT4 inhibitor, VB124, were without effect, suggesting syrosingopine targets the glycolytic pathway independent of H+ export. Furthermore, 2-DG and syrosingopine prevented enhanced ASIC1a-mediated store-operated Ca2+ entry in PASMC from CH rats. These data suggest multiple H+ transport mechanisms contribute to extracellular acidosis and inhibiting glycolysis, rather than specific H+ transporters, more effectively prevents extracellular acidification and ASIC1a activation. Together, these data reveal a novel pathologic relationship between glycolysis and ASIC1a activation in hypoxic PHTN.

2.
Am J Physiol Regul Integr Comp Physiol ; 323(6): R900-R909, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250874

RESUMO

Hypoxia is the reduction of alveolar partial pressure of oxygen ([Formula: see text]). Military members and people who practice recreational activities from moderate to high altitudes are at risk for hypoxic exposure. Hypoxemia's signs and symptoms vary from asymptomatic to severe responses, such as excessive hypoxic ventilatory responses and residual neurobehavioral impairment. Therefore, it is essential to identify hypoxia-induced biomarkers to indicate people with exposure to hypoxia. Advances have been made in understanding physiological responses to hypoxia, including elevations in circulating levels of endothelin 1 (ET-1) and microRNA 21 (miR-21) and reduction in circulating levels of hydrogen sulfide (H2S). Although the levels of these factors change upon exposure to hypoxia, it is unclear if these changes are sustained on return to normoxia. We hypothesize that hypoxia-induced ET-1 and miR-21 remain elevated, whereas hypoxia-reduction in H2S sustains after returning to normoxic conditions. To test this hypothesis, we exposed male rats to 6 h of 12% O2 and measured circulating levels of ET-1 and miR-21, pre, during, and posthypoxia. We found that ET-1 plasma levels increased in response to hypoxia but returned to normal levels within 30 min after the restoration of normoxia. miR-21 plasma levels and transdermal H2S emissions decreased in response to hypoxia, remaining decreased on return to normoxia, thus following the biomarker criteria. Therefore, this study supports a unique role for plasma miR21 and transdermal H2S as hypoxia biomarkers that could be used to identify individuals after exposure to hypoxia.


Assuntos
Sulfeto de Hidrogênio , MicroRNAs , Masculino , Ratos , Animais , Hipóxia , Oxigênio , Endotelina-1 , Biomarcadores , MicroRNAs/genética
3.
J Physiol ; 599(21): 4749-4762, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34487355

RESUMO

Pulmonary hypertension is characterized by sustained vasoconstriction and remodelling of the small pulmonary arteries, which is associated with persistent depolarization of the resting membrane potential (Em ) of pulmonary arterial smooth muscle cells (PASMCs). It is well-known that the underlying mechanism of this depolarization includes inhibition of K+ channels; however, whether other ion channels contribute to this depolarization is unknown. We previously reported that acid-sensing ion channel 1 (ASIC1), a non-selective cation channel (NSCC) that conducts both Na+ and Ca2+ , is present in PASMCs and contributes to the development of chronic hypoxia (CH)-induced pulmonary hypertension. Therefore, we tested the hypothesis that ASIC1-mediated Na+ influx contributes to PASMC Em regulation following CH-induced pulmonary hypertension. Using sharp electrode intracellular recordings in isolated, pressurized small pulmonary arteries from rats and mice, we show that exposure to CH leads to PASMC membrane depolarization compared with control animals, and this is independent of intraluminal pressure-induced depolarization. In addition to a decrease in PASMC whole-cell K+ currents following CH, we demonstrate that whole-cell NSCC currents are increased and essential to the persistent CH-induced Em depolarization in PASMCs. Both the specific inhibitor of ASIC1, psalmotoxin 1, and global knockout of ASIC1 (Asic1-/- ) prevents CH-induced Em depolarization and largely inhibits whole-cell NSCC currents, without affecting whole-cell K+ currents. Our results show a combination of factors, including inhibition of K+ efflux and augmented Na+ influx, mediate CH-induced PASMC depolarization. Furthermore, this study demonstrates a novel role for ASIC1 in the regulation of Em in PASMCs during CH-induced pulmonary hypertension. KEY POINTS: In pulmonary hypertensive patients and animal models of pulmonary hypertension, the resting membrane potential (Em ) of pulmonary arterial smooth muscle cells (PASMCs) is persistently depolarized. In addition to the well-established reduction of K+ conductance, we show that non-selective cation channel currents are increased and essential to the persistent Em depolarization in PASMCs following chronic hypoxia (CH)-induced pulmonary hypertension. The current study provides novel evidence that acid-sensing ion channel 1 (ASIC1)-mediated Na+ influx induces membrane depolarization and regulates Em in PASMCs following CH exposure. Although fairly quiescent under control conditions, our findings demonstrate a pathological function of ASIC1 in the development of chronic hypoxia-induced pulmonary hypertension.


Assuntos
Hipertensão Pulmonar , Artéria Pulmonar , Canais Iônicos Sensíveis a Ácido/genética , Animais , Cálcio/metabolismo , Células Cultivadas , Humanos , Hipóxia , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Ratos
4.
Am J Respir Cell Mol Biol ; 62(1): 61-73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31264901

RESUMO

Chronic hypoxia augments pressure- and agonist-induced pulmonary vasoconstriction through myofilament calcium sensitization. NADPH oxidases contribute to the development of pulmonary hypertension, and both epidermal growth factor receptor and Src kinases can regulate NADPH oxidase. We tested the hypothesis that Src-epidermal growth factor receptor (EGFR) signaling mediates enhanced vasoconstrictor sensitivity after chronic hypoxia through NADPH oxidase-derived superoxide generation. Protocols employed pharmacological inhibitors in isolated, pressurized rat pulmonary arteries to examine the contribution of a variety of signaling moieties to enhanced vascular tone after chronic hypoxia. Superoxide generation in pulmonary arterial smooth muscle cells was assessed using the fluorescent indicator dihydroethidium. Indices of pulmonary hypertension were measured in rats treated with the EGFR inhibitor gefitinib. Inhibition of NADPH oxidase, Rac1 (Ras-related C3 botulinum toxin substrate 1), and EGFR abolished pressure-induced pulmonary arterial tone and endothelin-1 (ET-1)-dependent calcium sensitization and vasoconstriction after chronic hypoxia. Consistently, chronic hypoxia augmented ET-1-induced superoxide production through EGFR signaling, and rats treated chronically with gefitinib displayed reduced right ventricular pressure and diminished arterial remodeling. Src kinases were also activated by ET-1 after chronic hypoxia and contributed to enhanced basal arterial tone and vasoconstriction in response to ET-1. A role for matrix metalloproteinase 2 to mediate Src-dependent EGFR activation is further supported by our findings. Our studies support a novel role for an Src kinase-EGFR-NADPH oxidase signaling axis to mediate enhanced pulmonary vascular smooth muscle Ca2+ sensitization, vasoconstriction, and pulmonary hypertension after chronic hypoxia.


Assuntos
Receptores ErbB/metabolismo , Hipóxia/tratamento farmacológico , Pulmão/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacocinética , Quinases da Família src/metabolismo , Animais , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Pulmão/metabolismo , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Am J Respir Cell Mol Biol ; 62(6): 709-718, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31945301

RESUMO

Chronic hypoxia (CH) augments depolarization-induced pulmonary vasoconstriction through superoxide-dependent, Rho kinase-mediated Ca2+ sensitization. Nicotinamide adenine dinucleotide phosphate oxidase and EGFR (epidermal growth factor receptor) signaling contributes to this response. Caveolin-1 regulates the activity of a variety of proteins, including EGFR and nicotinamide adenine dinucleotide phosphate oxidase, and membrane cholesterol is an important regulator of caveolin-1 protein interactions. We hypothesized that derangement of these membrane lipid domain components augments depolarization-induced Ca2+ sensitization and resultant vasoconstriction after CH. Although exposure of rats to CH (4 wk, ∼380 mm Hg) did not alter caveolin-1 expression in intrapulmonary arteries or the incidence of caveolae in arterial smooth muscle, CH markedly reduced smooth muscle membrane cholesterol content as assessed by filipin fluorescence. Effects of CH on vasoreactivity and superoxide generation were examined using pressurized, Ca2+-permeabilized, endothelium-disrupted pulmonary arteries (∼150 µm inner diameter) from CH and control rats. Depolarizing concentrations of KCl evoked greater constriction in arteries from CH rats than in those obtained from control rats, and increased superoxide production as assessed by dihydroethidium fluorescence only in arteries from CH rats. Both cholesterol supplementation and the caveolin-1 scaffolding domain peptide antennapedia-Cav prevented these effects of CH, with each treatment restoring membrane cholesterol in CH arteries to control levels. Enhanced EGF-dependent vasoconstriction after CH similarly required reduced membrane cholesterol. However, these responses to CH were not associated with changes in EGFR expression or activity, suggesting that cholesterol regulates this signaling pathway downstream of EGFR. We conclude that alterations in membrane lipid domain signaling resulting from reduced cholesterol content facilitate enhanced depolarization- and EGF-induced pulmonary vasoconstriction after CH.


Assuntos
Cálcio/fisiologia , Caveolina 1/biossíntese , Colesterol/fisiologia , Hipóxia/fisiopatologia , Lipídeos de Membrana/fisiologia , Músculo Liso Vascular/metabolismo , Artéria Pulmonar/fisiopatologia , Vasoconstrição/fisiologia , Animais , Caveolina 1/genética , Doença Crônica , Receptores ErbB/fisiologia , Hipóxia/metabolismo , Masculino , Potenciais da Membrana , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Superóxidos/metabolismo
6.
Am J Respir Cell Mol Biol ; 62(6): 732-746, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32048876

RESUMO

Pulmonary vasoconstriction resulting from intermittent hypoxia (IH) contributes to pulmonary hypertension (pHTN) in patients with sleep apnea (SA), although the mechanisms involved remain poorly understood. Based on prior studies in patients with SA and animal models of SA, the objective of this study was to evaluate the role of PKCß and mitochondrial reactive oxygen species (mitoROS) in mediating enhanced pulmonary vasoconstrictor reactivity after IH. We hypothesized that PKCß mediates vasoconstriction through interaction with the scaffolding protein PICK1 (protein interacting with C kinase 1), activation of mitochondrial ATP-sensitive potassium channels (mitoKATP), and stimulated production of mitoROS. We further hypothesized that this signaling axis mediates enhanced vasoconstriction and pHTN after IH. Rats were exposed to IH or sham conditions (7 h/d, 4 wk). Chronic oral administration of the antioxidant Tempol or the PKCß inhibitor LY-333531 abolished IH-induced increases in right ventricular systolic pressure and right ventricular hypertrophy. Furthermore, scavengers of O2- or mitoROS prevented enhanced PKCß-dependent vasoconstrictor reactivity to endothelin-1 in pulmonary arteries from IH rats. In addition, this PKCß/mitoROS signaling pathway could be stimulated by the PKC activator PMA in pulmonary arteries from control rats, and in both rat and human pulmonary arterial smooth muscle cells. These responses to PMA were attenuated by inhibition of mitoKATP or PICK1. Subcellular fractionation and proximity ligation assays further demonstrated that PKCß acutely translocates to mitochondria upon stimulation and associates with PICK1. We conclude that a PKCß/mitoROS signaling axis contributes to enhanced vasoconstriction and pHTN after IH. Furthermore, PKCß mediates pulmonary vasoconstriction through interaction with PICK1, activation of mitoKATP, and subsequent mitoROS generation.


Assuntos
Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , Mitocôndrias/fisiologia , Proteína Quinase C beta/fisiologia , Artéria Pulmonar/fisiopatologia , Vasoconstrição/fisiologia , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Células Cultivadas , Óxidos N-Cíclicos/farmacologia , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/metabolismo , Sequestradores de Radicais Livres/farmacologia , Humanos , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Hipóxia/enzimologia , Indóis/farmacologia , Masculino , Maleimidas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Canais de Potássio/metabolismo , Mapeamento de Interação de Proteínas , Artéria Pulmonar/enzimologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Síndromes da Apneia do Sono/fisiopatologia , Marcadores de Spin , Acetato de Tetradecanoilforbol/farmacologia
7.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L968-L980, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997513

RESUMO

Chronic hypoxia (CH)-induced pulmonary hypertension (PH) results, in part, from T helper-17 (TH17) cell-mediated perivascular inflammation. However, the antigen(s) involved is unknown. Cellular immunity to collagen type V (col V) develops after ischemia-reperfusion injury during lung transplant and is mediated by naturally occurring (n)TH17 cells. Col5a1 gene codifies for the α1-helix of col V, which is normally hidden from the immune system within type I collagen in the extracellular matrix. COL5A1 promoter analysis revealed nuclear factor of activated T cells, cytoplasmic 3 (NFATc3) binding sites. Therefore, we hypothesized that smooth muscle NFATc3 upregulates col V expression, leading to nTH17 cell-mediated autoimmunity to col V in response to CH, representing an upstream mechanism in PH development. To test our hypothesis, we measured indexes of PH in inducible smooth muscle cell (SMC)-specific NFATc3 knockout (KO) mice exposed to either CH (380 mmHg) or normoxia and compared them with wild-type (WT) mice. KO mice did not develop PH. In addition, COL5A1 was one of the 1,792 genes differentially affected by both CH and SMC NFATc3 in isolated intrapulmonary arteries, which was confirmed by RT-PCR and immunostaining. Cellular immunity to col V was determined using a trans vivo delayed-type hypersensitivity assay (Tv-DTH). Tv-DTH response was evident only when splenocytes were used from control mice exposed to CH but not from KO mice, and mediated by nTH17 cells. Our results suggest that SMC NFATc3 is important for CH-induced PH in adult mice, in part, by regulating the expression of the lung self-antigen COL5A1 protein contributing to col V-reactive nTH17-mediated inflammation and hypertension.


Assuntos
Colágeno Tipo V/metabolismo , Hipertensão Pulmonar/metabolismo , Miócitos de Músculo Liso/metabolismo , Fatores de Transcrição NFATC/metabolismo , Animais , Núcleo Celular/metabolismo , Imunidade Celular/fisiologia , Transplante de Pulmão/métodos
8.
Am J Physiol Heart Circ Physiol ; 318(2): H470-H483, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31922892

RESUMO

Reactive oxygen species (ROS), mitochondrial dysfunction, and excessive vasoconstriction are important contributors to chronic hypoxia (CH)-induced neonatal pulmonary hypertension. On the basis of evidence that PKCß and mitochondrial oxidative stress are involved in several cardiovascular and metabolic disorders, we hypothesized that PKCß and mitochondrial ROS (mitoROS) signaling contribute to enhanced pulmonary vasoconstriction in neonatal rats exposed to CH. To test this hypothesis, we examined effects of the PKCß inhibitor LY-333,531, the ROS scavenger 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (TEMPOL), and the mitochondrial antioxidants mitoquinone mesylate (MitoQ) and (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (MitoTEMPO) on vasoconstrictor responses in saline-perfused lungs (in situ) or pressurized pulmonary arteries from 2-wk-old control and CH (12-day exposure, 0.5 atm) rats. Lungs from CH rats exhibited greater basal tone and vasoconstrictor sensitivity to 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α (U-46619). LY-333,531 and TEMPOL attenuated these effects of CH, while having no effect in lungs from control animals. Basal tone was similarly elevated in isolated pulmonary arteries from neonatal CH rats compared with control rats, which was inhibited by both LY-333,531 and mitochondria-targeted antioxidants. Additional experiments assessing mitoROS generation with the mitochondria-targeted ROS indicator MitoSOX revealed that a PKCß-mitochondrial oxidant signaling pathway can be pharmacologically stimulated by the PKC activator phorbol 12-myristate 13-acetate in primary cultures of pulmonary artery smooth muscle cells (PASMCs) from control neonates. Finally, we found that neonatal CH increased mitochondrially localized PKCß in pulmonary arteries as assessed by Western blotting of subcellular fractions. We conclude that PKCß activation leads to mitoROS production in PASMCs from neonatal rats. Furthermore, this signaling axis may account for enhanced pulmonary vasoconstrictor sensitivity following CH exposure.NEW & NOTEWORTHY This research demonstrates a novel contribution of PKCß and mitochondrial reactive oxygen species signaling to increased pulmonary vasoconstrictor reactivity in chronically hypoxic neonates. The results provide a potential mechanism by which chronic hypoxia increases both basal and agonist-induced pulmonary arterial smooth muscle tone, which may contribute to neonatal pulmonary hypertension.


Assuntos
Hipóxia/metabolismo , Proteína Quinase C beta/metabolismo , Animais , Animais Recém-Nascidos , Doença Crônica , Óxidos N-Cíclicos/farmacologia , Inibidores Enzimáticos , Feminino , Sequestradores de Radicais Livres , Indóis/farmacologia , Maleimidas/farmacologia , Compostos Organofosforados/farmacologia , Estresse Oxidativo , Gravidez , Proteína Quinase C beta/antagonistas & inibidores , Artéria Pulmonar/efeitos dos fármacos , Circulação Pulmonar , Ratos , Espécies Reativas de Oxigênio , Marcadores de Spin , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Vasoconstrição , Vasoconstritores/farmacologia
9.
Am J Physiol Cell Physiol ; 314(2): C166-C176, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070491

RESUMO

Increases in pulmonary arterial smooth muscle cell (PASMC) intracellular Ca2+ levels and enhanced RhoA/Rho kinase-dependent Ca2+ sensitization are key determinants of PASMC contraction, migration, and proliferation accompanying the development of hypoxic pulmonary hypertension. We previously showed that acid-sensing ion channel 1a (ASIC1a)-mediated Ca2+ entry in PASMC is an important constituent of the active vasoconstriction, vascular remodeling, and right ventricular hypertrophy associated with hypoxic pulmonary hypertension. However, the enhanced ASIC1a-mediated store-operated Ca2+ entry in PASMC from pulmonary hypertensive animals is not dependent on an increase in ASIC1a protein expression, suggesting that chronic hypoxia (CH) stimulates ASIC1a function through other regulatory mechanism(s). RhoA is involved in ion channel trafficking, and levels of activated RhoA are increased following CH. Therefore, we hypothesize that activation of RhoA following CH increases ASIC1a-mediated Ca2+ entry by promoting ASIC1a plasma membrane localization. Consistent with our hypothesis, we found greater plasma membrane localization of ASIC1a following CH. Inhibition of RhoA decreased ASIC1a plasma membrane expression and largely diminished ASIC1a-mediated Ca2+ influx, whereas activation of RhoA had the opposite effect. A proximity ligation assay revealed that ASIC1a and RhoA colocalize in PASMC and that the activation state of RhoA modulates this interaction. Together, our findings show a novel interaction between RhoA and ASIC1a, such that activation of RhoA in PASMC, both pharmacologically and via CH, promotes ASIC1a plasma membrane localization and Ca2+ entry. In addition to enhanced RhoA-mediated Ca2+ sensitization following CH, RhoA can also activate a Ca2+ signal by facilitating ASIC1a plasma membrane localization and Ca2+ influx in pulmonary hypertension.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Sinalização do Cálcio , Membrana Celular/enzimologia , Hipertensão Pulmonar/enzimologia , Hipóxia/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Canais Iônicos Sensíveis a Ácido/deficiência , Canais Iônicos Sensíveis a Ácido/genética , Animais , Membrana Celular/patologia , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Feminino , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipóxia/genética , Hipóxia/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Transporte Proteico , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Ratos Wistar , Fatores de Tempo , Proteína rhoA de Ligação ao GTP
10.
Am J Physiol Heart Circ Physiol ; 314(2): H359-H369, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101179

RESUMO

Endothelial dysfunction in chronic hypoxia (CH)-induced pulmonary hypertension is characterized by reduced store-operated Ca2+ entry (SOCE) and diminished Ca2+-dependent production of endothelium-derived vasodilators. We recently reported that SOCE in pulmonary arterial endothelial cells (PAECs) is tightly regulated by membrane cholesterol and that decreased membrane cholesterol is responsible for impaired SOCE after CH. However, the ion channels involved in cholesterol-sensitive SOCE are unknown. We hypothesized that cholesterol facilitates SOCE in PAECs through the interaction of Orai1 and stromal interaction molecule 1 (STIM1). The role of cholesterol in Orai1-mediated SOCE was initially assessed using CH exposure in rats (4 wk, 380 mmHg) as a physiological stimulus to decrease PAEC cholesterol. The effects of Orai1 inhibition with AnCoA4 on SOCE were examined in isolated PAEC sheets from control and CH rats after cholesterol supplementation, substitution of endogenous cholesterol with epicholesterol (Epichol), or vehicle treatment. Whereas cholesterol restored endothelial SOCE in CH rats, both Epichol and AnCoA4 attenuated SOCE only in normoxic controls. The Orai1 inhibitor had no further effect in cells pretreated with Epichol. Using cultured pulmonary endothelial cells to allow better mechanistic analysis of the molecular components of cholesterol-regulated SOCE, we found that Epichol, AnCoA4, and Orai1 siRNA each inhibited SOCE compared with their respective controls. Epichol had no additional effect after knockdown of Orai1. Furthermore, Epichol substitution significantly reduced STIM1-Orai1 interactions as assessed by a proximity ligation assay. We conclude that membrane cholesterol is required for the STIM1-Orai1 interaction necessary to elicit endothelial SOCE. Furthermore, reduced PAEC membrane cholesterol after CH limits Orai1-mediated SOCE. NEW & NOTEWORTHY This research demonstrates a novel contribution of cholesterol to regulate the interaction of Orai1 and stromal interaction molecule 1 required for pulmonary endothelial store-operated Ca2+ entry. The results provide a mechanistic basis for impaired pulmonary endothelial Ca2+ influx after chronic hypoxia that may contribute to pulmonary hypertension.


Assuntos
Sinalização do Cálcio , Membrana Celular/metabolismo , Colesterol/metabolismo , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Proteína ORAI1/metabolismo , Artéria Pulmonar/metabolismo , Animais , Pressão Arterial , Benzodioxóis/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Doença Crônica , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/efeitos dos fármacos , Hipóxia/fisiopatologia , Masculino , Proteína ORAI1/antagonistas & inibidores , Proteína ORAI1/genética , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Ratos Sprague-Dawley , Molécula 1 de Interação Estromal/metabolismo
11.
Am J Physiol Heart Circ Physiol ; 314(5): H1011-H1021, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373038

RESUMO

Chronic hypoxia (CH) augments basal and endothelin-1 (ET-1)-induced pulmonary vasoconstrictor reactivity through reactive oxygen species (ROS) generation and RhoA/Rho kinase (ROCK)-dependent myofilament Ca2+ sensitization. Because ROCK promotes actin polymerization and the actin cytoskeleton regulates smooth muscle tension, we hypothesized that actin polymerization is required for enhanced basal and ET-1-dependent vasoconstriction after CH. To test this hypothesis, both end points were monitored in pressurized, endothelium-disrupted pulmonary arteries (fourth-fifth order) from control and CH (4 wk at 0.5 atm) rats. The actin polymerization inhibitors cytochalasin and latrunculin attenuated both basal and ET-1-induced vasoconstriction only in CH vessels. To test whether CH directly alters the arterial actin profile, we measured filamentous actin (F-actin)-to-globular actin (G-actin) ratios by fluorescent labeling of F-actin and G-actin in fixed pulmonary arteries and actin sedimentation assays using homogenized pulmonary artery lysates. We observed no difference in actin polymerization between groups under baseline conditions, but ET-1 enhanced actin polymerization in pulmonary arteries from CH rats. This response was blunted by the ROS scavenger tiron, the ROCK inhibitor fasudil, and the mDia (RhoA effector) inhibitor small-molecule inhibitor of formin homology domain 2. Immunoblot analysis revealed an effect of CH to increase both phosphorylated (inactive) and total levels of the actin disassembly factor cofilin but not phosphorylated cofilin-to-total cofilin ratios. We conclude that actin polymerization contributes to increased basal pulmonary arterial constriction and ET-1-induced vasoconstrictor reactivity after CH in a ROS- and ROCK-dependent manner. Our results further suggest that enhanced ET-1-mediated actin polymerization after CH is dependent on mDia but independent of changes in the phosphorylated cofilin-to-total cofilin ratio. NEW & NOTEWORTHY This research is the first to demonstrate a role for actin polymerization in chronic hypoxia-induced basal pulmonary arterial constriction and enhanced agonist-induced vasoconstrictor activity. These results suggest that a reactive oxygen species-Rho kinase-actin polymerization signaling pathway mediates this response and may provide a mechanistic basis for the vasoconstrictor component of pulmonary hypertension.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Artéria Pulmonar/metabolismo , Remodelação Vascular , Vasoconstrição , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/patologia , Fatores de Despolimerização de Actina/metabolismo , Animais , Doença Crônica , Modelos Animais de Doenças , Endotelina-1/farmacologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipóxia/metabolismo , Hipóxia/patologia , Hipóxia/fisiopatologia , Masculino , Estresse Oxidativo , Fosforilação , Polimerização , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos Sprague-Dawley , Remodelação Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
12.
Curr Top Membr ; 82: 53-91, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30360783

RESUMO

Cholesterol is a key structural component and regulator of lipid raft signaling platforms critical for cell function. Such regulation may involve changes in the biophysical properties of lipid microdomains or direct protein-sterol interactions that alter the function of ion channels, receptors, enzymes, and membrane structural proteins. Recent studies have implicated abnormal membrane cholesterol levels in mediating endothelial dysfunction that is characteristic of pulmonary hypertensive disorders, including that resulting from long-term exposure to hypoxia. Endothelial dysfunction in this setting is characterized by impaired pulmonary endothelial calcium entry and an associated imbalance that favors production vasoconstrictor and mitogenic factors that contribute to pulmonary hypertension. Here we review current knowledge of cholesterol regulation of pulmonary endothelial Ca2+ homeostasis, focusing on the role of membrane cholesterol in mediating agonist-induced Ca2+ entry and its components in the normal and hypertensive pulmonary circulation.


Assuntos
Cálcio/metabolismo , Colesterol/metabolismo , Endotélio Vascular/metabolismo , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Caveolina 1/metabolismo , Humanos , Pulmão/metabolismo , Canais de Cátion TRPC/metabolismo
13.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L609-L624, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213473

RESUMO

Inflammation is a prominent pathological feature in pulmonary arterial hypertension, as demonstrated by pulmonary vascular infiltration of inflammatory cells, including T and B lymphocytes. However, the contribution of the adaptive immune system is not well characterized in pulmonary hypertension caused by chronic hypoxia. CD4+ T cells are required for initiating and maintaining inflammation, suggesting that these cells could play an important role in the pathogenesis of hypoxic pulmonary hypertension. Our objective was to test the hypothesis that CD4+ T cells, specifically the T helper 17 subset, contribute to chronic hypoxia-induced pulmonary hypertension. We compared indices of pulmonary hypertension resulting from chronic hypoxia (3 wk) in wild-type mice and recombination-activating gene 1 knockout mice (RAG1-/-, lacking mature T and B cells). Separate sets of mice were adoptively transferred with CD4+, CD8+, or T helper 17 cells before normoxic or chronic hypoxic exposure to evaluate the involvement of specific T cell subsets. RAG1-/- mice had diminished right ventricular systolic pressure and arterial remodeling compared with wild-type mice exposed to chronic hypoxia. Adoptive transfer of CD4+ but not CD8+ T cells restored the hypertensive phenotype in RAG1-/- mice. Interestingly, RAG1-/- mice receiving T helper 17 cells displayed evidence of pulmonary hypertension independent of chronic hypoxia. Supporting our hypothesis, depletion of CD4+ cells or treatment with SR1001, an inhibitor of T helper 17 cell development, prevented increased pressure and remodeling responses to chronic hypoxia. We conclude that T helper 17 cells play a key role in the development of chronic hypoxia-induced pulmonary hypertension.


Assuntos
Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/imunologia , Hipóxia/complicações , Hipóxia/imunologia , Células Th17/imunologia , Transferência Adotiva , Animais , Pressão Sanguínea/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Contagem de Células , Movimento Celular/efeitos dos fármacos , Doença Crônica , Feminino , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Proteínas de Homeodomínio/metabolismo , Hipertensão Pulmonar/fisiopatologia , Interleucina-17/farmacologia , Interleucina-6/metabolismo , Pulmão/metabolismo , Depleção Linfocítica , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sístole/efeitos dos fármacos , Sístole/fisiologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Células Th17/efeitos dos fármacos
14.
Am J Physiol Heart Circ Physiol ; 312(6): H1176-H1184, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28364016

RESUMO

Chronic hypoxia (CH)-induced pulmonary hypertension is associated with diminished production of endothelium-derived Ca2+-dependent vasodilators such as nitric oxide. Interestingly, ATP-induced endothelial Ca2+ entry as well as membrane cholesterol (Chol) are decreased in pulmonary arteries from CH rats (4 wk, barometric pressure = 380 Torr) compared with normoxic controls. Store-operated Ca2+ entry (SOCE) and depolarization-induced Ca2+ entry are major components of the response to ATP and are similarly decreased after CH. We hypothesized that membrane Chol facilitates both SOCE and depolarization-induced pulmonary endothelial Ca2+ entry and that CH attenuates these responses by decreasing membrane Chol. To test these hypotheses, we administered Chol or epicholesterol (Epichol) to acutely isolated pulmonary arterial endothelial cells (PAECs) from control and CH rats to either supplement or replace native Chol, respectively. The efficacy of membrane Chol manipulation was confirmed by filipin staining. Epichol greatly reduced ATP-induced Ca2+ influx in PAECs from control rats. Whereas Epichol similarly blunted endothelial SOCE in PAECs from both groups, Chol supplementation restored diminished SOCE in PAECs from CH rats while having no effect in controls. Similar effects of Chol manipulation on PAEC Ca2+ influx were observed in response to a depolarizing stimulus of KCl. Furthermore, KCl-induced Ca2+ entry was inhibited by the T-type Ca2+ channel antagonist mibefradil but not the L-type Ca2+ channel inhibitor diltiazem. We conclude that PAEC membrane Chol is required for ATP-induced Ca2+ entry and its two components, SOCE and depolarization-induced Ca2+ entry, and that reduced Ca2+ entry after CH may be due to loss of this key regulator.NEW & NOTEWORTHY This research is the first to examine the direct role of membrane cholesterol in regulating pulmonary endothelial agonist-induced Ca2+ entry and its components. The results provide a potential mechanism by which chronic hypoxia impairs pulmonary endothelial Ca2+ influx, which may contribute to pulmonary hypertension.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Artéria Pulmonar/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cavéolas/metabolismo , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/farmacologia , Doença Crônica , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Masculino , Potenciais da Membrana , Artéria Pulmonar/efeitos dos fármacos , Ratos Sprague-Dawley , Fatores de Tempo
15.
Am J Physiol Heart Circ Physiol ; 313(4): H828-H838, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28733445

RESUMO

Augmented vasoconstrictor reactivity is thought to play an important role in the development of chronic hypoxia (CH)-induced neonatal pulmonary hypertension. However, whether this response to CH results from pulmonary endothelial dysfunction and reduced nitric oxide (NO)-mediated vasodilation is not well understood. We hypothesized that neonatal CH enhances basal tone and pulmonary vasoconstrictor sensitivity by limiting NO-dependent pulmonary vasodilation. To test this hypothesis, we assessed the effects of the NO synthase (NOS) inhibitor Nω-nitro-l-arginine (l-NNA) on baseline pulmonary vascular resistance (PVR) and vasoconstrictor sensitivity to the thromboxane mimetic U-46619 in saline-perfused lungs (in situ) from 2-wk-old control and CH (12-day exposure, 0.5 atm) Sprague-Dawley rats. Basal tone was defined as that reversed by exogenous NO (spermine NONOate). CH neonates displayed elevated right ventricular systolic pressure (in vivo) and right ventricular hypertrophy, indicative of pulmonary hypertension. Perfused lungs from CH rats demonstrated greater baseline PVR, basal tone, and U-46619-mediated vasoconstriction compared with control rats in the absence of l-NNA. l-NNA markedly increased baseline PVR and reactivity to U-46619 in lungs from CH neonates, further augmenting vasoconstrictor sensitivity compared with control lungs. Exposure to CH also enhanced NO-dependent vasodilation to arginine vasopressin, pulmonary expression of NOS III [endothelial NOS (eNOS)], and eNOS phosphorylation at activation residue Ser1177 However, CH did not alter lung nitrotyrosine levels, a posttranslational modification reflecting [Formula: see text] scavenging of NO. We conclude that, in contrast to our hypothesis, enhanced basal tone and agonist-induced vasoconstriction after neonatal CH is limited by increased NO-dependent pulmonary vasodilation resulting from greater eNOS expression and phosphorylation at activation residue Ser1177NEW & NOTEWORTHY This research is the first to demonstrate enhanced nitric oxide-dependent vasodilation that limits increased vasoconstrictor reactivity in neonatal pulmonary hypertension. These results suggest that augmented vasoconstriction in this setting reflects changes in smooth muscle reactivity rather than a reduction in nitric oxide-dependent pulmonary vasodilation.


Assuntos
Hipóxia/fisiopatologia , Óxido Nítrico , Circulação Pulmonar , Vasoconstritores/farmacologia , Vasodilatação , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Animais Recém-Nascidos , Doença Crônica , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Nitroarginina/farmacologia , Ratos , Ratos Sprague-Dawley , Tirosina/análogos & derivados , Tirosina/metabolismo , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos
16.
Adv Exp Med Biol ; 967: 83-103, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29047083

RESUMO

Normally, the pulmonary circulation is maintained in a low-pressure, low-resistance state with little resting tone. Pulmonary arteries are thin-walled and rely heavily on pulmonary arterial distension and recruitment for reducing pulmonary vascular resistance when cardiac output is elevated. Under pathophysiological conditions, however, active vasoconstriction and vascular remodeling lead to enhanced pulmonary vascular resistance and subsequent pulmonary hypertension (PH). Chronic hypoxia is a critical pathological factor associated with the development of PH resulting from airway obstruction (COPD, sleep apnea), diffusion impairment (interstitial lung disease), developmental lung abnormalities, or high altitude exposure (World Health Organization [WHO]; Group III). The rise in pulmonary vascular resistance increases right heart afterload causing right ventricular hypertrophy that can ultimately lead to right heart failure in patients with chronic lung disease. PH is typically characterized by diminished paracrine release of vasodilators, antimitogenic factors, and antithrombotic factors (e.g., nitric oxide and protacyclin) and enhanced production of vasoconstrictors and mitogenic factors (e.g., reactive oxygen species and endothelin-1) from the endothelium and lung parenchyma. In addition, phenotypic changes to pulmonary arterial smooth muscle cells (PASMC), including alterations in Ca2+ homeostasis, Ca2+ sensitivity, and activation of transcription factors are thought to play prominent roles in the development of both vasoconstrictor and arterial remodeling components of hypoxia-associated PH. These changes in PASMC function are briefly reviewed in Sect. 1 and the influence of altered reactive oxygen species homeostasis on PASMC function discussed in Sects. 2-4.


Assuntos
Hipertensão Pulmonar/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Hipertensão Pulmonar/fisiopatologia , Hipóxia , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Oxirredução , Artéria Pulmonar/fisiopatologia , Remodelação Vascular , Resistência Vascular , Vasoconstrição
17.
Am J Physiol Cell Physiol ; 310(5): C390-400, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26702130

RESUMO

Acid-sensing ion channel 1 (ASIC1) contributes to Ca(2+) influx and contraction in pulmonary arterial smooth muscle cells (PASMC). ASIC1 binds the PDZ (PSD-95/Dlg/ZO-1) domain of the protein interacting with C kinase 1 (PICK1), and this interaction is important for the subcellular localization and/or activity of ASIC1. Therefore, we first hypothesized that PICK1 facilitates ASIC1-dependent Ca(2+) influx in PASMC by promoting plasma membrane localization. Using Duolink to determine protein-protein interactions and a biotinylation assay to assess membrane localization, we demonstrated that the PICK1 PDZ domain inhibitor FSC231 diminished the colocalization of PICK1 and ASIC1 but did not limit ASIC1 plasma membrane localization. Although stimulation of store-operated Ca(2+) entry (SOCE) greatly enhanced colocalization between ASIC1 and PICK1, both FSC231 and shRNA knockdown of PICK1 largely augmented SOCE. These data suggest PICK1 imparts a basal inhibitory effect on ASIC1 Ca(2+) entry in PASMC and led to an alternative hypothesis that PICK1 facilitates the interaction between ASIC1 and negative intracellular modulators, namely PKC and/or the calcium-calmodulin-activated phosphatase calcineurin. FSC231 limited PKC-mediated inhibition of SOCE, supporting a potential role for PICK1 in this response. Additionally, we found PICK1 inhibits ASIC1-mediated SOCE through an effect of calcineurin to dephosphorylate the channel. Furthermore, it appears PICK1/calcineurin-mediated regulation of SOCE opposes PKA phosphorylation and activation of ASIC1. Together our data suggest PKA and PICK1/calcineurin differentially regulate ASIC1-mediated SOCE and these modulatory complexes are important in determining downstream Ca(2+) signaling.


Assuntos
Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Calcineurina/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Proteínas do Citoesqueleto , Hipóxia/metabolismo , Masculino , Artéria Pulmonar/metabolismo , Ratos Wistar
18.
Am J Physiol Lung Cell Mol Physiol ; 307(5): L419-30, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24993130

RESUMO

Our laboratory shows that acid-sensing ion channel 1 (ASIC1) contributes to the development of hypoxic pulmonary hypertension by augmenting store-operated Ca(2+) entry (SOCE) that is associated with enhanced agonist-induced vasoconstriction and arterial remodeling. However, this enhanced Ca(2+) influx following chronic hypoxia (CH) is not dependent on an increased ASIC1 protein expression in pulmonary arterial smooth muscle cells (PASMC). It is well documented that hypoxic pulmonary hypertension is associated with changes in redox potential and reactive oxygen species homeostasis. ASIC1 is a redox-sensitive channel showing increased activity in response to reducing agents, representing an alternative mechanism of regulation. We hypothesize that the enhanced SOCE following CH results from removal of an inhibitory effect of hydrogen peroxide (H2O2) on ASIC1. We found that CH increased PASMC superoxide (O2 (·-)) and decreased rat pulmonary arterial H2O2 levels. This decrease in H2O2 is a result of decreased Cu/Zn superoxide dismutase expression and activity, as well as increased glutathione peroxidase (GPx) expression and activity following CH. Whereas H2O2 inhibited ASIC1-dependent SOCE in PASMC from control and CH animals, addition of catalase augmented ASIC1-mediated SOCE in PASMC from control rats but had no further effect in PASMC from CH rats. These data suggest that, under control conditions, H2O2 inhibits ASIC1-dependent SOCE. Furthermore, H2O2 levels are decreased following CH as a result of diminished dismutation of O2 (·-) and increased H2O2 catalysis through GPx-1, leading to augmented ASIC1-dependent SOCE.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Peróxido de Hidrogênio/farmacologia , Hipóxia , Músculo Liso Vascular/metabolismo , Artéria Pulmonar/metabolismo , Animais , Western Blotting , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Oxidantes/farmacologia , Artéria Pulmonar/citologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/fisiologia , Superóxido Dismutase-1
19.
Am J Physiol Heart Circ Physiol ; 306(1): H41-52, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24186095

RESUMO

Chronic hypoxia (CH) associated with respiratory disease results in elevated pulmonary vascular intracellular Ca(2+) concentration, which elicits enhanced vasoconstriction and promotes vascular arterial remodeling and thus has important implications in the development of pulmonary hypertension (PH). Store-operated Ca(2+) entry (SOCE) contributes to this elevated intracellular Ca(2+) concentration and has also been linked to acute hypoxic pulmonary vasoconstriction (HPV). Since our laboratory has recently demonstrated an important role for acid-sensing ion channel 1 (ASIC1) in mediating SOCE, we hypothesized that ASIC1 contributes to both HPV and the development of CH-induced PH. To test this hypothesis, we examined responses to acute hypoxia in isolated lungs and assessed the effects of CH on indexes of PH, arterial remodeling, and vasoconstrictor reactivity in wild-type (ASIC1(+/+)) and ASIC1 knockout (ASIC1(-/-)) mice. Restoration of ASIC1 expression in pulmonary arterial smooth muscle cells from ASIC1(-/-) mice rescued SOCE, confirming the requirement for ASIC1 in this response. HPV responses were blunted in lungs from ASIC1(-/-) mice. Both SOCE and receptor-mediated Ca(2+) entry, along with agonist-dependent vasoconstrictor responses, were diminished in small pulmonary arteries from control ASIC(-/-) mice compared with ASIC(+/+) mice. The effects of CH to augment receptor-mediated vasoconstrictor and SOCE responses in vessels from ASIC1(+/+) mice were not observed after CH in ASIC1(-/-) mice. In addition, ASIC1(-/-) mice exhibited diminished right ventricular systolic pressure, right ventricular hypertrophy, and arterial remodeling in response to CH compared with ASIC1(+/+) mice. Taken together, these data demonstrate an important role for ASIC1 in both HPV and the development of CH-induced PH.


Assuntos
Canais Iônicos Sensíveis a Ácido/genética , Sinalização do Cálcio , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Vasoconstrição , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Ventrículos do Coração/patologia , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Hipóxia/complicações , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Disfunção Ventricular
20.
Microcirculation ; 21(3): 259-71, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24118444

RESUMO

The pulmonary circulation is a low-pressure, low-resistance vascular bed with little to no resting tone under normal conditions. An increase in the [Ca(2+) ]i in PASMCs is an important determinant of contraction, migration, and proliferation. Both Ca(2+) influx through plasma membrane Ca(2+) channels and Ca(2+) release from the SR contribute to a rise in [Ca(2+) ]i . Additionally important in the pulmonary circulation are several kinase-mediated signaling pathways that act to increase the sensitivity of the contractile apparatus to [Ca(2+) ]i . Similarly, cytoskeletal processes resulting in dynamic remodeling of the actin cytoskeleton can further contribute to contractility in the pulmonary circulation. In addition to endocrine, paracrine, and autocrine factors, alveolar hypoxia is an important stimulus for pulmonary vasoconstriction. However, prolonged hypoxia is a critical pathological stimulus associated with the development of pulmonary hypertension and cor pulmonale. In this review, we will discuss recent advances in our understanding of how Ca(2+) homeostasis and sensitization regulate PASMC contractility under both physiological and pathophysiological conditions.


Assuntos
Sinalização do Cálcio/fisiologia , Músculo Liso Vascular/fisiologia , Artéria Pulmonar/fisiologia , Actinas/metabolismo , Animais , Canais de Cálcio/metabolismo , Homeostase , Humanos , Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , Modelos Cardiovasculares , Músculo Liso Vascular/fisiopatologia , Polimerização , Proteína Quinase C/metabolismo , Artéria Pulmonar/fisiopatologia , Circulação Pulmonar/fisiologia , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA