Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38883722

RESUMO

Loeys-Dietz syndrome (LDS) is an aneurysm disorder caused by mutations that decrease transforming growth factor-ß (TGF-ß) signaling. Although aneurysms develop throughout the arterial tree, the aortic root is a site of heightened risk. To identify molecular determinants of this vulnerability, we investigated the heterogeneity of vascular smooth muscle cells (VSMCs) in the aorta of Tgfbr1 M318R/+ LDS mice by single cell and spatial transcriptomics. Reduced expression of components of the extracellular matrix-receptor apparatus and upregulation of stress and inflammatory pathways were observed in all LDS VSMCs. However, regardless of genotype, a subset of Gata4-expressing VSMCs predominantly located in the aortic root intrinsically displayed a less differentiated, proinflammatory profile. A similar population was also identified among aortic VSMCs in a human scRNAseq dataset. Postnatal VSMC-specific Gata4 deletion reduced aortic root dilation in LDS mice, suggesting that this factor sensitizes the aortic root to the effects of impaired TGF-ß signaling.

2.
Microbiol Spectr ; 11(4): e0485122, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37272817

RESUMO

Vibrio parahaemolyticus is a bacterial pathogen that becomes lethal to Penaeus shrimps when acquiring the pVA1-type plasmid carrying the PirABvp genes, causing acute hepatopancreatic necrosis disease (AHPND). This disease causes significant losses across the world, with outbreaks reported in Southeast Asia, Mexico, and South America. Virulence level and mortality differences have been reported in isolates from different locations, and whether this phenomenon is caused by plasmid-related elements or genomic-related elements from the bacteria remains unclear. Here, nine genomes of South American AHPND-causing V. parahaemolyticus (VPAHPND) isolates were assembled and analyzed using a comparative genomics approach at (i) whole-genome, (ii) secretion system, and (iii) plasmid level, and then included for a phylogenomic analysis with another 86 strains. Two main results were obtained from our analyses. First, all isolates contained pVA1-type plasmids harboring the toxin coding genes, and with high similarity with the prototypical sequence of Mexican-like origin, while phylogenomic analysis showed some level of heterogeneity with discrete clusters and wide diversity compared to other available genomes. Second, although a high genomic similarity was observed, variation in virulence genes and clusters was observed, which might be relevant in the expression of the disease. Overall, our results suggest that South American pathogenic isolates are derived from various genetic lineages which appear to have acquired the plasmid through horizontal gene transfer. Furthermore, pathogenicity seems to be a multifactorial trait where the degree of virulence could be altered by the presence or variations of several virulence factors. IMPORTANCE AHPND have caused losses of over $2.6 billion to the aquaculture industry around the world due to its high mortality rate in shrimp farming. The most common etiological agent is V. parahaemolyticus strains possessing the pVA1-type plasmid carrying the PirABvp toxin. Nevertheless, complete understanding of the role of genetic elements and their impact in the virulence of this pathogen remains unclear. In this work, we analyzed nine South American AHPND-causing V. parahaemolyticus isolates at a genomic level, and assessed their evolutionary relationship with other 86 strains. We found that all our isolates were highly similar and possessed the Mexican-type plasmid, but their genomic content did not cluster with other Mexican strains, but instead were spread across all isolates. These results suggest that South American VPAHPND have different genetic backgrounds, and probably proceed from diverse geographical locations, and acquire the pVA1-type plasmid via horizontal gene transfer at different times.


Assuntos
Toxinas Biológicas , Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/genética , Plasmídeos/genética , Genômica , Aquicultura , Necrose
3.
Microbiome ; 9(1): 88, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845910

RESUMO

BACKGROUND: Acute hepatopancreatic necrosis disease (AHPND) is an important shrimp bacterial disease caused by some Vibrio species. The severity of the impact of this disease on aquaculture worldwide has made it necessary to develop alternatives to prophylactic antibiotics use, such as the application of probiotics. To assess the potential to use probiotics in order to limit the detrimental effects of AHNPD, we evaluated the effect of the ILI strain, a Vibrio sp. bacterium and efficient shrimp probiotic, using metabarcoding (16S rRNA gene) on the gastrointestinal microbiota of shrimp after being challenged with AHPND-causing V. parahaemolyticus. RESULTS: We showed how the gastrointestinal microbiome of shrimp varied between healthy and infected organisms. Nevertheless, a challenge of working with AHPND-causing Vibrio pathogens and Vibrio-related bacteria as probiotics is the potential risk of the probiotic strain becoming pathogenic. Consequently, we evaluated whether ILI strain can acquire the plasmid pV-AHPND via horizontal transfer and further cause the disease in shrimp. Conjugation assays were performed resulting in a high frequency (70%) of colonies harboring the pv-AHPND. However, no shrimp mortality was observed when transconjugant colonies of the ILI strain were used in a challenge test using healthy shrimp. We sequenced the genome of the ILI strain and performed comparative genomics analyses using AHPND and non-AHPND Vibrio isolates. Using available phylogenetic and phylogenomics analyses, we reclassified the ILI strain as Vibrio diabolicus. In summary, this work represents an effort to study the role that probiotics play in the normal gastrointestinal shrimp microbiome and in AHPND-infected shrimp, showing that the ILI probiotic was able to control pathogenic bacterial populations in the host's gastrointestinal tract and stimulate the shrimp's survival. The identification of probiotic bacterial species that are effective in the host's colonization is important to promote animal health and prevent disease. CONCLUSIONS: This study describes probiotic bacteria capable of controlling pathogenic populations of bacteria in the shrimp gastrointestinal tract. Our work provides new insights into the complex dynamics between shrimp and the changes in the microbiota. It also addresses the practical application of probiotics to solve problems with pathogens that cause high mortality-rate in shrimp farming around the world. Video Abstract.


Assuntos
Microbiota , Penaeidae , Probióticos , Vibrio parahaemolyticus , Animais , Humanos , Necrose , Filogenia , RNA Ribossômico 16S/genética , Sobreviventes , Vibrio , Vibrio parahaemolyticus/genética
4.
PLoS One ; 14(1): e0210478, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30699138

RESUMO

Bacterial diseases cause high mortality in Penaeus (Litopenaeus) vannamei postlarvae. Therefore, appropriate application of efficient therapeutic products is of vital importance for disease control. This study evaluated through in vitro analyses the antimicrobial effectiveness of commercial therapeutic products used for P. vannamei bacterial diseases and antibiotics against pathogenic Vibrio strains circulating in Ecuadorian hatcheries. Twenty strains were isolated from 31 larvae samples with high bacterial counts from 10 hatcheries collected during mortality events. The strains virulence was verified through challenge tests with Artemia franciscana nauplii and P. vannamei postlarvae. Through 16S rRNA sequence analysis, strains showed a great similarity to the Vibrio sequences reported as pathogens, with 95% belonging to the Harveyi clade. Through antibiograms and minimal inhibitory concentration (MIC) in vitro tests we found that furazolidone, ciprofloxacin, chloramphenicol, norfloxacin, nalidixic acid, florfenicol, fosfomycin and enrofloxacin inhibited the growth of all or most of the strains. Less efficient antibiotics were penicillin, oxytetracycline and tetracycline. A multiple antibiotic resistance (MAR) index of 0.23 showed some level of resistance to antibiotics, with two MAR prevalent patterns (Penicillin-Oxytetracycline and Penicillin-Oxytetracycline-Tetracycline). From a total of 16 natural products (five probiotics, nine organic acids and two essential oils), only three (one probiotic, one organic acid and one essential oil) were effective to control most of the strains. Shrimp producers can apply relatively simple in vitro analyses, such as those employed in this study, to help take adequate management decisions to reduce the impact of bacterial diseases and increase profit.


Assuntos
Antibacterianos/uso terapêutico , Aquicultura , Produtos Biológicos/uso terapêutico , Surtos de Doenças/prevenção & controle , Penaeidae/microbiologia , Vibrioses/tratamento farmacológico , Vibrioses/prevenção & controle , Vibrio/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Sequência de Bases , Produtos Biológicos/farmacologia , Ácidos Carboxílicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Equador/epidemiologia , Hemócitos/citologia , Hemócitos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Penaeidae/citologia , Penaeidae/efeitos dos fármacos , Filogenia , Probióticos/farmacologia , RNA Ribossômico 16S/genética , Resultado do Tratamento , Vibrioses/epidemiologia , Vibrioses/virologia
5.
Genome Announc ; 6(26)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29954906

RESUMO

White spot syndrome virus (WSSV) is the most devastating viral disease affecting cultivated shrimp around the world. Currently, there is no reported genetic information on WSSV affecting Penaeus vannamei in Ecuador. Therefore, we determined the genome of a WSSV isolate from shrimp and compared it with the genomes of isolates from other geographical locations.

6.
Sci Rep ; 8(1): 13080, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166588

RESUMO

Acute hepatopancreatic necrosis disease (AHPND) has extended rapidly, causing alarming shrimp mortalities. Initially, the only known causative agent was Vibrio parahaemolyticus carrying a plasmid coding for the mortal toxins PirVP. Recently, it has been found that the plasmid and hence the disease, could be transferred among members of the Harveyi clade. The current study performs a genomic characterization of an isolate capable of developing AHPND in shrimp. Mortality studies and molecular and histopathological analyses showed the infection capacity of the strain. Multilocus sequence analysis placed the bacteria as a member of the Orientalis clade, well known for containing commensal and even probiotic bacteria used in the shrimp industry. Further whole genome comparative analyses, including Vibrio species from the Orientalis clade, and phylogenomic metrics (TETRA, ANI and DDH) showed that the isolate belongs to a previously unidentified species, now named Vibrio punensis sp. nov. strain BA55. Our findings show that the gene transfer capacity of Vibrio species goes beyond the clade classification, demonstrating a new pathogenic capacity to a previously known commensal clade. The presence of these genes in a different Vibrio clade may contribute to the knowledge of the Vibrio pathogenesis and has major implications for the spread of emerging diseases.


Assuntos
Genes Virais , Filogenia , Vibrioses/genética , Vibrioses/virologia , Vibrio/genética , Animais , Bactérias/isolamento & purificação , Sequência de Bases , Bioensaio , DNA/metabolismo , Hepatopâncreas/patologia , Hepatopâncreas/virologia , Tipagem de Sequências Multilocus , Necrose , Penaeidae/microbiologia , Penaeidae/virologia , Plasmídeos/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Vibrio/isolamento & purificação
7.
Genom Data ; 9: 143-4, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27570736

RESUMO

Vibrio parahaemolyticus is a pathogenic bacteria which has been associated to the early mortality syndrome (EMS) also known as hepatopancreatic necrosis disease (AHPND) causing high mortality in shrimp farms. Pathogenic strains contain two homologous genes related to insecticidal toxin genes, PirA and PirB, these toxin genes are located on a plasmid contained within the bacteria. Genomic sequences have allowed the finding of two strains with a divergent structure related to the geographic region from where they were found. The isolates from the geographic collection of Southeast Asia and Mexico show variable regions on the plasmid genome, indicating that even though they are not alike they still conserve the toxin genes. In this paper, we report for the first time, a pathogenic V. parahaemolyticus strain in shrimp from South America that showed symptoms of AHPND. The genomic analysis revealed that this strain of V. parahaemolyticus found in South America appears to be more related to the Southeast Asia as compared to the Mexican strains. This finding is of major importance for the shrimp industry, especially in regards to the urgent need for disease control strategies to avoid large EMS outbreaks and economic loss, and to determine its dispersion in South America. The whole-genome shotgun project of V. parahaemolyticus strain Ba94C2 have been deposited at DDBJ/EMBL/GenBank under the accession PRJNA335761.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA